Frey B J. Filling in scenes by propagating probabilities through layers and into appearance models [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC: IEEE, 2000 (1): 185-192.
[2]
Olson C F. Maximum-likelihood template matching [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC: IEEE, 2000 (2): 52-57.
[3]
Lee W C, Chen C H. A fast template matching method for rotation invariance using two-stage process [C]//Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Kyoto: IEEE, 2009: 9-12.
[4]
Black M J, Jepson A D. Eigentracking: robust matching and tracking of articulated objects using a view based representation [J]. International Journal of Computer Vision,1998, 26(1): 63-84.
[5]
Zhang J X, Cai W L, Tian Y, et al. Visual Tracking via Sparse Representation Based Linear Subspace Model [C]//Proceedings of the 9th IEEE International Conference on Computer and Information Technology. Xiamen: IEEE, 2009, (1):166-171.
[6]
He K, Wang G, Yang Y. Optical flow-based facial feature tracking using prior measurement [C]//Proceedings of the 7th IEEE International Conference on Cognitive Informatics. Stanford, CA: IEEE, 2008: 324-331.
[7]
Eldeeb S M, Khalifa A M, Fahmy A S. Hybrid intensity-and phase-based optical flow tracking of tagged MRI [C]//Proceedings of the 36th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society. Chicago, IL:IEEE, 2014: 1059-1062.
[8]
Yang M, Tao J, Shi L, et al. An outlier rejection scheme for optical flow tracking [C] //Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing. Santander: IEEE, 2011: 1-4.
[9]
Tao H, Sawhney H S, Kumar R. Object tracking with bayesian estimation of dynamic layer representations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 21(1): 75-89.
[10]
Barth E, Stuke I, Aach T, et al. Spatio-temporal motion estimation for transparency and occlusions [C]// Proceedings of International Conference on Image Processing. Barcelona: IEEE, 2003,(3): 65-68.
[11]
Du K, Ju Y F, Jin Y L, et al. MeanShift tracking algorithm with adaptive block color histogram [C]//Proceedings of 2nd International Conference on Consumer Electronics, Communications and Networks. Yichang: IEEE, 2012: 2692-2695.
[12]
Diwakar M, Patel P K, Gupta K, et al. Object tracking using joint enhanced color-texture histogram[C]//Proceedings of IEEE Second International Conference on Image Information Processing. Shimla: IEEE, 2013: 160-165.
[13]
Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. Acm Computing Surveys (CSUR), 2006, 38(4):#13.
[14]
Wu Y, Lim J, Yang M H. Online object tracking: a benchmark [C]// Proceedings of IEEE Conference on CVPR. Portland, OR: IEEE, 2013: 2411-2418.
[15]
Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
[16]
Chen Zh Y, Wu Y. Robust dictionary learning by error source decomposition[C]//Proceedings of IEEE Conference on ICCV. Sydney, NSW: IEEE, 2013: 2216-2223.
[17]
Wang N Y, Wang J D, Yeung D Y. Online robust non-negative dictionary learning for visual tracking [C]//Proceedings of IEEE International Conference on Computer Vision. Sydney, NSW: IEEE, 2013: 657-664.
[18]
Zhang T Z, Ghanem B, Liu S, et al. Robust visual tracking via multi-task sparse learning [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012: 2042-2049.
[19]
Wang D, Lu H C, Yang M H. Least soft threshold squares tracking [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013: 2371-2378.
[20]
Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends in Machine Learning, 2010, 3(1):1-122.
[21]
更多...
[22]
Liu G C, Lin Z C, Yan S C, et al. Robust recovery of subspace structures by low-rank representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
[23]
Lin Z C, Chen M M, Wu L Q, et al. The augmented Lagrange multiplier method for exact recovery of corrupted low rank matrices [EB/OL]. [2013-10-18]. http://arxiv.org/pdf/1009.5055v3.pdf.
[24]
Zhong W, Lu H C, Yang M H. Robust object tracking via sparsity-based collaborative model [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012: 1838-1845.
[25]
Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012: 1822-1829.
[26]
Wang D, Lu H C, Yang Ming-Hsuan. Online object tracking with sparse prototypes [J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-325.