全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于2维灰度熵阈值选取快速迭代的图像分割

DOI: 10.11834/jig.20150807

Keywords: 图像分割,阈值选取,灰度熵,快速迭代

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的为了使图像阈值分割的精度和速度进一步提高,提出了一种基于2维灰度熵阈值选取快速迭代的图像分割方法。方法首先,提出了1维灰度熵阈值选取的快速迭代算法;然后,考虑图像目标和背景的类内灰度均匀性,给出了基于灰度―邻域平均灰度级直方图的灰度熵阈值选取准则;最后,提出了2维灰度熵阈值选取的快速迭代算法,并采用递推方式计算准则函数中的中间变量,避免其重复运算,加快了运算速度,大大减少了运算量。结果大量实验结果表明,与近年来提出的3种阈值分割法相比,所提出的方法分割性能更优,分割后的图像中目标区域完整,边缘清晰,细节丰富且运行时间短,仅为基于混沌小生境粒子群优化的二维斜分倒数熵分割法运行时间的3%左右。结论本文方法对不同类型灰度级图像的分割效果及运行速度均有明显优势,是实际系统中可选择的一种快速有效的图像分割方法。

References

[1]  Mayszko D, Stepaniuk J. Adaptive multilevel rough entropy evolutionary thresholding [J]. Information Sciences, 2010, 180(7):1138-1158. [DOI: 10.1016/j.ins. 2009.11.034]
[2]  Ranjani J J, Thiruvengadam S J. Fast threshold selection algorithm for segmentation of synthetic aperture radar images [J]. IET Radar, Sonar & Navigation, 2012, 6(8):788-795. [DOI: 10.1049/iet-rsn.2011.0341]
[3]  He Z Y, Sun L N, Huang W G, et al. Thresholding segmentation algorithm based on Otsu criterion and line intercept histogram [J]. Optics and Precision Engineering, 2012, 20(10):2315-2323. [何志勇,孙立宁,黄伟国,等. 基于Otsu准则和直线截距直方图的阈值分割[J]. 光学精密工程, 2012, 20(10):2315-2323.] [DOI: 10.3788/OPE.20122010.2315]
[4]  Wu Y Q, Wu S H, Zhang X J. Two-dimensional Tsallis gray entropy image thresholding using chaotic particle swarm optimization or decomposition [J]. Journal of Image and Graphics, 2012, 17(8):902-910. [吴一全, 吴诗?, 张晓杰. 利用混沌 PSO 或分解的2维Tsallis灰度熵阈值分割[J]. 中国图象图形学报, 2012, 17(8):902-910.] [DOI: 10.11834/jig.20120802]
[5]  Yu J, Chen P, Yin X F. Two-dimensional Tsallis entropy threshold segmentation based on decomposition [J]. Journal of Computational Information Systems, 2013, 9(13):5379-5386. [DOI: 10.12733/jcis6497]
[6]  Zhang H, Fan J L. Two-dimensional Arimoto entropy linear-type thresholding segmentation method [J]. Acta Photonica Sinica, 2013, 42(2): 234-240. [张弘, 范九伦. 二维Arimoto熵直线型阈值分割法[J]. 光子学报, 2013,42(2):234-240.] [DOI: 10.3788/gzxb20134202.023 4]
[7]  Tang K Z, Yuan X J, Sun T K, et al. An improved scheme for minimum cross entropy threshold selection based on genetic algorithm [J]. Knowledge-Based System, 2011, 24(8):1131-1138. [DOI: 10.1016/j.knosys.2011.02.013]
[8]  Kapur J N, Sahoo P K, Wong A K C. A new method for grey-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics and Image Processing, 1985, 29(3):273-285. [DOI: 10.1016/0165-1 684(80)90020-1]
[9]  Abutaleb A S. Automatic thresholding of gray-level picture using two-dimensional entropy [J]. Pattern Recognition, 1989, 47(1):22-32. [DOI: 10.1016/0734-189 X(89)90051-0]
[10]  Liu J Z. A fast algorithm for thresholding of gray-level picture using 2D entropy [J]. Pattern Recognition and Artificial Intelligence, 1991, 4(3):46-53. [刘健庄. 基于二维熵的图像阈值选择快速算法[J]. 模式识别与人工智能, 1991, 4(3):46-53.]
[11]  Chen W T, Wen C H, Yang C W. A fast two-dimensional entropic thresholding algorithm [J]. Pattern Recognition, 1994, 27(7):885-893. [DOI: 10.1016/0031-3203(94)901 54-6]
[12]  Gong J, Li L Y, Chen W N. Fast recursive algorithm for two-dimensional thresholding [J]. Pattern Recognition, 1998, 31(3): 295-300. [DOI: 10.1016/S0031-3203(97)000 43-5]
[13]  Zhang Y J, Wu X J, Xia L Z. A fast recurring algorithm for two-dimensional entropic thresholding for image segmentation [J]. Pattern Recognition and Artificial Intelligence, 1997, 10(3):259-264. [张毅军, 吴雪菁, 夏良正. 二维熵图像阈值分割的快速递推算法[J]. 模式识别与人工智能, 1997, 10(3):259-264.]
[14]  Du F, Shi W K, Chen L Z, et al. Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO) [J]. Pattern Recognition Letters, 2005, 26:597-603. [DOI: 10.1016/j. patrec.2004.11.002]
[15]  Wu C M, Tian X P, Tan T N. Modification of two-dimensional entropic thresholding method and its fast iterative algorithm [J]. Pattern Recognition and Artificial Intelligence, 2010, 23(1):127-136. [吴成茂, 田小平, 谭铁牛. 二维熵阈值法的修改及其快速迭代算法[J]. 模式识别与人工智能, 2010, 23(1):127-136.] [DOI: 10.3969/j.issn.1003-6059. 2010. 01. 021]
[16]  Wu Y Q, Zhou H C, Ji S X, et al. Image thresholding based on 2-dimensional gray entropy and chaotic particle swarm algorithm [J]. Transactions of Beijing Institute of Technology, 2011, 31(12):1428-1434. [吴一全, 周怀春, 纪守新, 等. 基于二维灰度熵及混沌粒子群的图像阈值选取[J]. 北京理工大学学报, 2011, 31(12):1428-1434.]
[17]  Wu Y Q, Zhang X J, Wu S H. 2-dimensional symmetric cross-entropy image thresholding [J]. Journal of Image and Graphics, 2011, 16(8):1393-1401. [吴一全, 张晓杰, 吴诗?. 2维对称交叉熵图像阈值分割[J]. 中国图象图形学报, 2011, 16(8):1393-1401.] [DOI: 10.11834/jig.20110806]
[18]  Tang Y G, Di Q Y, Zhao L X, et al. Image thresholding segmentation based on two-dimensional minimum Tsallis-cross entropy [J]. Acta Physica Sinica, 2009, 58(1):9-15. [唐英干, 邸秋艳, 赵立兴, 等. 基于二维最小 Tsallis 交叉熵的图像阈值分割方法[J]. 物理学报, 2009, 58(1):9-15.]
[19]  Wu Y Q, Zhan B C. Thresholding based on reciprocal entropy and chaotic particle swarm optimization [J]. Signal Processing, 2010, 26(7): 1044-1049. [吴一全, 占必超. 基于混沌粒子群优化的倒数熵阈值选取方法[J]. 信号处理, 2010, 26(7):1044-1049.] [DOI: 10.3969/j.issn.1003-0530.2010.07.015]
[20]  Sanyal N, Chatterjee A, Munshi S. An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation [J]. Expert Systems with Applications, 2011, 38(12):15489-15498. [DOI: 10.1016/j.eswa.2011.06.011]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133