Mayszko D, Stepaniuk J. Adaptive multilevel rough entropy evolutionary thresholding [J]. Information Sciences, 2010, 180(7):1138-1158. [DOI: 10.1016/j.ins. 2009.11.034]
[2]
Ranjani J J, Thiruvengadam S J. Fast threshold selection algorithm for segmentation of synthetic aperture radar images [J]. IET Radar, Sonar & Navigation, 2012, 6(8):788-795. [DOI: 10.1049/iet-rsn.2011.0341]
[3]
He Z Y, Sun L N, Huang W G, et al. Thresholding segmentation algorithm based on Otsu criterion and line intercept histogram [J]. Optics and Precision Engineering, 2012, 20(10):2315-2323. [何志勇,孙立宁,黄伟国,等. 基于Otsu准则和直线截距直方图的阈值分割[J]. 光学精密工程, 2012, 20(10):2315-2323.] [DOI: 10.3788/OPE.20122010.2315]
[4]
Wu Y Q, Wu S H, Zhang X J. Two-dimensional Tsallis gray entropy image thresholding using chaotic particle swarm optimization or decomposition [J]. Journal of Image and Graphics, 2012, 17(8):902-910. [吴一全, 吴诗?, 张晓杰. 利用混沌 PSO 或分解的2维Tsallis灰度熵阈值分割[J]. 中国图象图形学报, 2012, 17(8):902-910.] [DOI: 10.11834/jig.20120802]
[5]
Yu J, Chen P, Yin X F. Two-dimensional Tsallis entropy threshold segmentation based on decomposition [J]. Journal of Computational Information Systems, 2013, 9(13):5379-5386. [DOI: 10.12733/jcis6497]
Tang K Z, Yuan X J, Sun T K, et al. An improved scheme for minimum cross entropy threshold selection based on genetic algorithm [J]. Knowledge-Based System, 2011, 24(8):1131-1138. [DOI: 10.1016/j.knosys.2011.02.013]
[8]
Kapur J N, Sahoo P K, Wong A K C. A new method for grey-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics and Image Processing, 1985, 29(3):273-285. [DOI: 10.1016/0165-1 684(80)90020-1]
[9]
Abutaleb A S. Automatic thresholding of gray-level picture using two-dimensional entropy [J]. Pattern Recognition, 1989, 47(1):22-32. [DOI: 10.1016/0734-189 X(89)90051-0]
[10]
Liu J Z. A fast algorithm for thresholding of gray-level picture using 2D entropy [J]. Pattern Recognition and Artificial Intelligence, 1991, 4(3):46-53. [刘健庄. 基于二维熵的图像阈值选择快速算法[J]. 模式识别与人工智能, 1991, 4(3):46-53.]
[11]
Chen W T, Wen C H, Yang C W. A fast two-dimensional entropic thresholding algorithm [J]. Pattern Recognition, 1994, 27(7):885-893. [DOI: 10.1016/0031-3203(94)901 54-6]
[12]
Gong J, Li L Y, Chen W N. Fast recursive algorithm for two-dimensional thresholding [J]. Pattern Recognition, 1998, 31(3): 295-300. [DOI: 10.1016/S0031-3203(97)000 43-5]
[13]
Zhang Y J, Wu X J, Xia L Z. A fast recurring algorithm for two-dimensional entropic thresholding for image segmentation [J]. Pattern Recognition and Artificial Intelligence, 1997, 10(3):259-264. [张毅军, 吴雪菁, 夏良正. 二维熵图像阈值分割的快速递推算法[J]. 模式识别与人工智能, 1997, 10(3):259-264.]
[14]
Du F, Shi W K, Chen L Z, et al. Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO) [J]. Pattern Recognition Letters, 2005, 26:597-603. [DOI: 10.1016/j. patrec.2004.11.002]
[15]
Wu C M, Tian X P, Tan T N. Modification of two-dimensional entropic thresholding method and its fast iterative algorithm [J]. Pattern Recognition and Artificial Intelligence, 2010, 23(1):127-136. [吴成茂, 田小平, 谭铁牛. 二维熵阈值法的修改及其快速迭代算法[J]. 模式识别与人工智能, 2010, 23(1):127-136.] [DOI: 10.3969/j.issn.1003-6059. 2010. 01. 021]
[16]
Wu Y Q, Zhou H C, Ji S X, et al. Image thresholding based on 2-dimensional gray entropy and chaotic particle swarm algorithm [J]. Transactions of Beijing Institute of Technology, 2011, 31(12):1428-1434. [吴一全, 周怀春, 纪守新, 等. 基于二维灰度熵及混沌粒子群的图像阈值选取[J]. 北京理工大学学报, 2011, 31(12):1428-1434.]
[17]
Wu Y Q, Zhang X J, Wu S H. 2-dimensional symmetric cross-entropy image thresholding [J]. Journal of Image and Graphics, 2011, 16(8):1393-1401. [吴一全, 张晓杰, 吴诗?. 2维对称交叉熵图像阈值分割[J]. 中国图象图形学报, 2011, 16(8):1393-1401.] [DOI: 10.11834/jig.20110806]
[18]
Tang Y G, Di Q Y, Zhao L X, et al. Image thresholding segmentation based on two-dimensional minimum Tsallis-cross entropy [J]. Acta Physica Sinica, 2009, 58(1):9-15. [唐英干, 邸秋艳, 赵立兴, 等. 基于二维最小 Tsallis 交叉熵的图像阈值分割方法[J]. 物理学报, 2009, 58(1):9-15.]
[19]
Wu Y Q, Zhan B C. Thresholding based on reciprocal entropy and chaotic particle swarm optimization [J]. Signal Processing, 2010, 26(7): 1044-1049. [吴一全, 占必超. 基于混沌粒子群优化的倒数熵阈值选取方法[J]. 信号处理, 2010, 26(7):1044-1049.] [DOI: 10.3969/j.issn.1003-0530.2010.07.015]
[20]
Sanyal N, Chatterjee A, Munshi S. An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation [J]. Expert Systems with Applications, 2011, 38(12):15489-15498. [DOI: 10.1016/j.eswa.2011.06.011]