全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于流形学习的彩色遥感图像分维数估算

DOI: 10.11834/jig.20150814

Keywords: 彩色纹理分析,彩色遥感图像,分维数,流形学习,特征提取

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的纹理特征提取一直是遥感图像分析领域研究的热点和难点。现有的纹理特征提取方法主要集中于研究单波段灰色遥感图像,如何提取多波段彩色遥感图像的纹理特征,是多光谱遥感的研究前沿。方法提出了一种基于流形学习的彩色遥感图像分维数估算方法。该方法利用局部线性嵌入方法,对由颜色属性所组成的5-D欧氏超曲面进行维数简约处理;再将维数简约处理后的颜色属性用于分维数估算。结果利用Landsat-7遥感卫星数据和GeoEye-1遥感卫星数据进行实验,结果表明,同Peleg法和Sarkar法等其他分维数估算方法相比,本文方法具有较小的拟合误差。其中,其他4种对比方法所获拟合误差E平均值分别是本文方法所获得拟合误差E平均值的26.2倍、5倍、26.3倍、5倍。此外,本文方法不仅可提供具有较好分类特性的分维数,而且还能提供相对于其他4种对比方法更加稳健的分维数。结论在针对中低分辨率的真彩遥感图像和假彩遥感图像以及高分辨率彩色合成遥感图像方面,本文方法能够利用不同地物所具有颜色属性信息,提取出各类型地物所对应的纹理信息,有效地改善了分维数对不同地物的区分能力。这对后续研究各区域中不同类型地物的分布情况及针对不同类型地物分布特点而制定区域规划及开发具有积极意义。

References

[1]  Wu M Q, Wang J, Niu Z, et al. A model for spatial and temporal data fusion [J]. Journal of Infrared and Millimeter Waves, 2012, 31(1): 80-84.[邬明权, 王洁, 牛铮, 等. 融合MODIS与Landsat数据生成高时间分辨率Landsat数据 [J]. 红外与毫米波学报, 2012, 31(1): 80-84.]
[2]  Yu X S, Wu C D, Chen D Y, et al. Using support vector machine and level set for river detection in high resolution remote sensing image [J]. Journal of Image and Graphics, 2013, 18(6): 677-684.[于晓升, 吴成东, 陈东岳, 等. 支持向量机和水平集的高分辨率遥感图像河流检测[J]. 中国图象图形学报, 2013, 18(6): 677-684.][DOI:10.11834/jig. 20130609]
[3]  Liu L, Kuang G Y. Overview of image textural feature extraction methods [J]. Journal of Image and Graphics, 2009, 14(4): 622-635.[刘丽, 匡纲要. 图像纹理特征提取方法综述 [J]. 中国图象图形学报, 2009, 14(4): 622-635.][DOI:10.11834/jig.20090409]
[4]  Wang R S. Image Understanding [M]. Changsha: National University of Defense Technology Press, 1994: 145-1461.[王润生. 图像理解 [M]. 长沙: 国防科学技术大学出版社, 1994: 145-1461.]
[5]  Xia Y, Zhao R C, Jiang Z T. Fractal dimension estimation based on mathematical morphology [J]. Journal of Image and Graphics, 2004, 9(6): 760-766.[夏勇, 赵荣椿, 江泽涛. 一种基于数学形态学的分形维数估计方法[J]. 中国图象图形学报, 2004, 9(6): 760-766.][DOI:10.11834/jig.200406143]
[6]  Shan Y B, Yu F Z, Li X H. Correlation analysis for fractal dimension between TM image and terrain of broadleaved forest in tianmu mountain [J]. Scientia Geographica Sinica, 2011, 31(6): 682-687.[单勇兵, 于法展, 李先华. 天目山阔叶林的TM 影像及其地形的分维相关分析 [J]. 地理科学, 2011, 31(6): 682-687.]
[7]  Luan H J, Tian Q J, Gu X F, et al. Establishing continuous scaling of NDVI based on fractal theory and GEOEYE-1 image [J]. Journal of Infrared and Millimeter Waves, 2013, 32(6):538-544.[栾海军, 田庆久, 顾行发, 等. 基于分形理论与GEOEYE-1影像的NDVI连续空间尺度转换模型构建及应用 [J]. 红外与毫米波学报, 2013, 32(6):538-544.]
[8]  Wu H, Sun Y, Shi W, et al. Examining the satellite-detected urban land use spatial patterns using multidimensional fractal dimension indices [J]. Remote Sensing, 2013, 5(10): 5152-5172.
[9]  Peleg S, Naor J, Hartley R. Multiple resolution texture analysis and classification [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6(4): 518-523.
[10]  Sarkar N, Chaudhuri B B. An efficient approach to estimate fractal dimension of textural images [J]. Pattern Recognition, 1992, 25(9): 1035-1041.
[11]  Li J, Du Q, Sun C. An improved box-counting method for image fractal dimension estimation [J]. Pattern Recognition, 2009, 42(11): 2460-2469.
[12]  Penland A P. Fractal-based description of natural scenes [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6(6): 661-674.
[13]  Xie J, Xia D S, Sun H J. A classification method based on texture neural network for color remote sensing images [J]. Journal of Computer Research and Development, 2000, 37(9): 1120-1124.[谢君, 夏德深, 孙怀江. 一种基于纹理域神经网络的彩色卫星图像分析方法[J]. 计算机研究与发展, 2000, 37(9): 1120-1124.]
[14]  She A C, Huang T S. Segmentation of road scenes using color and fractal-based texture classification [C]//Proceedings of International Conference on Image Processing. Austin, TX: IEEE Press, 1994: 1026-1030.
[15]  Backes A R, Casanova D, Bruno O M. Color texture analysis based on fractal descriptors [J]. Pattern Recognition, 2012, 45(5): 1984-1992.
[16]  Sa J J D, Backe A R, Cortez P C. Color texture classification based on gravitational collapse [J]. Pattern Recognition, 2013, 46(6): 1628-1637.
[17]  Cǎliman A, Ivanovici M, Richard N. Probabilistic pseudo-morphology for grayscale and color images [J]. Pattern Recognition, 2014, 47(2): 721-735.
[18]  Li H K, Wu L X, Li F S. Optimal fractal band selection on HJ-1 CCD image for land use classification [J]. Journal of Remote Sensing, 2013, 17(6): 1572-1586.[李恒凯, 吴立新, 李发帅. 面向土地利用分类的HJ-1 CCD影像最佳分形波段选择 [J]. 遥感学报, 2013, 17(6): 1572-1586.]
[19]  Seung H S, Lee D D. The manifold ways of perception [J]. Science, 2000, 290(5500): 2268-2269.
[20]  Silva V D, Tenenbaumi J B. Global versus local methods in nonlinear dimensionality reduction [C]//Proceedings of Neural Information Processing Systems 15. Cambridge, MA: MIT Press, 2002: 705-712.
[21]  更多...
[22]  Sch?lkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural computation, 1998, 10(5): 1299-1319.
[23]  Tenenbaum J B, De Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319-2323.
[24]  Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323-2326.
[25]  Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment [J]. SIAM Journal of Scientific Computing, 2004, 26(1): 313-338.
[26]  Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373-1396.
[27]  Luo S W, Zhao L W. Manifold learning algorithms based on spectral graph theory [J]. Journal of Computer Research and Development, 2006, 43(7): 1173-1179.[罗四维, 赵连伟. 基于谱图理论的流形学习算法 [J]. 计算机研究与发展, 2006, 43(7): 1173-1179.]
[28]  Ivanovici M, Richard N. Fractal dimension of color fractal images [J]. IEEE Trans. on Image Processing, 2011, 20(1): 227-235.
[29]  Wang X J, Zhang J, Wei Z H, et al. Color Correction for Remote Sensing Images Based on Remote Sensing Camera Model [J]. Journal of Infrared and Millimeter Waves, 2002, 21(6): 443-446.[王雪晶, 张健, 魏仲慧, 等. 基于遥感相机模型的遥感图像彩色校正 [J]. 红外与毫米波学报, 2002, 21(6): 443-446.]
[30]  Guo Z Q, Cai S. Algorithm of remote sensing image classification and implementation by matlab [J]. Journal of Wuhan University of Technology, 2006, 28(1): 108-111.[郭志强, 蔡嵩. 彩色遥感图像分类算法及Matlab实现 [J]. 武汉理工大学学报, 2006, 28(1): 108-111.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133