全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于暗原色先验的图像快速去雾

DOI: 10.11834/jig.20150707

Keywords: 图像去雾,暗原色先验,快速去雾,逐像素处理,引导滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对暗原色先验去雾算法出现的边缘残雾、天空色彩失真以及速度较慢问题,提出一种快速有效的图像去雾算法。方法舍弃传统分块的思想,采用逐像素处理的方法估计透射率,并对估计值过低的透射率进行适当的增强。大气光采用效率更高的四叉树算法来求解。结果有效地解决了边缘残雾和天空色彩失真问题,相比其他算法,去雾后的视觉效果有所提升。透射率和大气光的求解速度都得到一定程度的提高,去雾速度是暗原色先验去雾算法的近4倍。结论实验结果表明,本文算法在保证良好去雾效果的前提下能大幅提升去雾的效率,节省去雾所花费的时间。对于大部分有雾图像,本文算法都能够达到较好的去雾效果,但在处理具有较大景深的图像时,远景部分的去雾效果欠佳。鉴于速度上的优势,本文算法适用于对实时性要求比较高的去雾场合。

References

[1]  Narasimhan S G, Nayar S K.Contrast restoration ofweather degradedimages[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.
[2]  Levin A, Lischinski D, Weiss Y. A closed form solution to natural image matting [C]//Proceedings of CVPR. Washington DC: IEEE, 2006, 1:61-68.
[3]  He K M, Sun J, Tang X O. Guided image filtering [C]// Proceedings of ECCV. Washington DC: IEEE, 2010: 1-14.
[4]  Guo F, Cai Z X, Xie B, et al. Review and prospect of image dehazing techniques[J]. Computer Applications, 2010, 30(9): 2417-2421.[郭?, 蔡自兴, 谢斌, 等. 图像去雾技术研究综述与展望[J]. 计算机应用, 2010, 30(9): 2417-2421.]
[5]  Ji X Q, Dai M, Yin C L, et al. Haze removal for aerial degraded images[J]. Optics and Precision Engineering, 2011, 19(7): 1659-1668. [嵇晓强, 戴明, 尹传历, 等. 航拍降质图像的去雾处理[J]. 光学精密工程, 2011, 19(7): 1659-1668.]
[6]  Zhan X, Zhou Y. Algorithm based on local variance to enhance contrast of fog-degraded image[J]. Computer Applications, 2007, 27(2): 510-512. [詹翔, 周焰. 一种基于局部方差的雾天图像增强方法[J]. 计算机应用, 2007, 27(2): 510-512.]
[7]  Rui Y B, Li P, Sun J T, et al. Interactive defogging method for image[J]. Computer Applications, 2006, 26(11): 2733-2735.[芮义斌, 李鹏, 孙锦涛, 等. 一种交互式图像去雾方法[J]. 计算机应用, 2006, 26(11): 2733-2735.]
[8]  Wang P, Zhang C, Luo Y X. Fast algorithm to enhance contrast of fog-degraded images[J]. Computer Applications,2006, 26(1): 152-154. [王萍, 张春, 罗颖昕. 一种雾天图像低对比度增强的快速算法[J]. 计算机应用, 2006, 26(1): 152-154.]
[9]  Ye Q G, Zong J C, Li C, et al. Cloud and fog removal processing of remote sensing image based on homomorphic filtering[J]. Hydrographic Surveying and Charting, 2009, 29(3): 45-46. [叶秋果, 宗景春, 李钏, 等. 基于同态滤波的遥感影像去云雾处理[J]. 海洋测绘, 2009, 29(3): 45-46.]
[10]  Liu Q, Lu X H, Li X L. Adaptive image enhancement method based on multi-scale retinex algorithm[J]. Computer Applications, 2009, 29(8): 2077-2079.[刘茜, 卢心红, 李象霖. 基于多尺度Retinex的自适应图像增强方法[J]. 计算机应用, 2009, 29(8): 2077-2079.]
[11]  He K M, Sun J, Tang X O. Single image haze removal using dark channel prior [C]//Proceedings of CVPR.Washington DC: IEEE Computer Society,2009: 1956-1963.
[12]  Narasimhan S G, Nayar S K. Removing weather effects from monochrome images[C]// Proceedings of CVPR. Washington DC: IEEE Computer Society, 2001:186-193.
[13]  Narasimhan S G, Nayar S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254.
[14]  Jiang J G, Hou T F, Qi M L. Improved algorithm on image haze removal using dark channel prior[J]. Journal of Circuits and Systems, 2011, 16(2): 7-12.[蒋建国, 侯天峰, 齐美彬. 改进的基于暗原色先验的图像去雾算法[J]. 电路与系统学报, 2011, 16(2): 7-12.]
[15]  Kim J H, Jang W D, Sim J Y. Optimized contrast enhancement for real-time image and video dehazing [J]. Journal of Visual Communications and Image Representation, 2013, 24(4): 410-426.
[16]  Kim J H, Jang W D, Sim J Y.Single image dehazing based on contrast enhancement[C]//Proceedings of ICASSP. Washington DC: IEEE, 2011:1273-1276.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133