全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用快速傅里叶变换的目标尺度自适应回归跟踪

DOI: 10.11834/jig.20150610

Keywords: 视频跟踪,尺度自适应,核岭回归,快速傅里叶变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的视频跟踪中,跟踪背景复杂及目标表观变化是导致跟踪失败的主要原因.回归跟踪算法利用目标的表观信息建立回归模型进行跟踪,然而该算法的跟踪效率较低;基于循环结构的检测跟踪方法能有效利用循环结构提高跟踪效率,但该算法不能跟踪尺度变化的目标.为解决上述问题,本文提出一种基于快速傅里叶变换的尺度自适应回归跟踪算法,方法首先利用快速傅里叶变换建立目标的核岭回归模型并搜索得到目标的中心位置,然后计算候选目标区域像素点的权重分布图,从而估计出目标的最佳尺度.结果进行6组实验,与当前常见算法(CBWH、IVT、DFT、DSST、增量试探法)相比,本文算法不仅能较好地适应背景、目标尺度及姿态的变化,而且平均每帧运行时间短(毫秒级).结论本文提出一种基于快速傅里叶变换的尺度自适应回归跟踪算法,算法对背景、尺度及姿态变化的目标跟踪具有较强的鲁棒性和很好的跟踪效率.

References

[1]  Yang H X, Shao L, Zheng F, et al. Recent advances and trends in visual tracking: a review [J]. Neurocomputing, 2011, 74:3823-3831.
[2]  Hou Z Q, Han C Z. A survey of visual tracking [J]. Acta Automatica sinica, 2006,32(4): 603-617.[侯志强, 韩崇昭. 视觉跟踪技术综述 [J].自动化学报,2006,32(4): 603-617.]
[3]  Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-577.
[4]  Collins R T. Mean-Shift blob tracking through scale space [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Madison, WI, United States : IEEE,2003: 234-240.
[5]  Zhuang B H, Lu H C, Xiao Z Y, et al. Visual tracking via discriminative sparse similarity map [J].IEEE Transactions on Image Processing, 2014, 23(4):1872-1881.
[6]  Wang D, Lu H C, Yang M. Online object tracking with sparse prototypes [J].IEEE Transactions on Image Process, 2013, 22(1):314-325.
[7]  Sevilla L, Learned E. distribution fields for Tracking. [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, United states: IEEE, 2012: 1910-1917.
[8]  Ning J F, Zhang L, Zhang D, et al. Robust mean shift tracking with corrected background-weighted histogram.[J]. IET Computer Vision,2012, 6(1): 62-69.
[9]  Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]// Proceedings of European Conference on Computer Vision. Berlin: Springer Verlag,2012: 702-715.
[10]  Ning J F, Zhang L, Zhang D, et al. Scale and orientation adaptive mean shift tracking [J]. IET Computer Vision, 2012, 6(1):52-61.
[11]  Li Q, Shao C. Nonlinear systems identification based on kernel ridge regression and its application [J]. Journal of System Simulation, 2009, 21(8): 2152-2155. [李 琦,邵诚.基于核岭回归的非线性系统辨识及其应用[J].系统仿真学报, 2009, 21(8): 2152-2155.]
[12]  Ross D, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [J].International Journal of Computer Vision, 2008, 77(1-3): 125-141.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133