全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向彩色增强图像的客观质量评价算法

DOI: 10.11834/jig.20150507

Keywords: 图像质量评价,增强图像,梯度增强图,颜色增强图,亮度增强因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的现有的全参考图像质量评价方法使用“完美”的源信号作为参考,但是增强图像的参考图像通常不是“完美”的.因此,现有的全参考质量评价方法不能用于增强图像的评价,提出了一种新的面向彩色增强图像的质量评价算法.方法利用图像的梯度、颜色和亮度特征,提出了增强图像的梯度增强图、颜色增强图和亮度增强因子的计算方法,计算增强图像相对于参考图像在梯度、颜色和亮度方面的增强程度;并建立了亮度增强因子和梯度增强图、颜色增强图之间的关系模型;另外,原图像的梯度和颜色特征也被提取用于增强图像的质量评价.结果使用公开数据库进行的实验结果表明,该算法和现有最优算法相比,皮尔逊线性相关系数(PLCC)和斯皮尔曼相关系数(SROCC)分别提高了2.9%和2.5%,而均方根误差(RMSE)则降低了12.3%,获得了比现有算法更优越的性能.结论本文算法解决了目前已有的评价算法需要参考图像为“完美”图像,而且增强图像质量无法采用相似性程度进行计算的问题,适用于为了获得更好视觉质量的不含噪增强图像的质量评价.

References

[1]  Chandler D M. Seven challenges in image quality assessment: past, present, and future research [J]. ISRN Signal Processing, 2013, 905685: 1-53.
[2]  Maini R, Aggarwal H. A comprehensive review of image enhancement techniques [J]. Journal of Computing, 2010, 2(3): 8-13.
[3]  Nercessian S C, Panetta K A, Agaian S S. Non-linear direct multi-scale image enhancement based on the luminance and contrast masking characteristics of the human visual system [J]. IEEE Transactions on Image Processing, 2013, 22(9): 3549-3561.
[4]  Kumar M, Dass S. A total variation-based algorithm for pixel-level image fusion [J]. IEEE Transactions on Image Processing, 2009, 18(9): 2137-2143.
[5]  Zhou Y W, Chen Q, Sun Q S, et al. Remote sensing image enhancement based on dark channel prior and bilateral filtering [J]. Journal of Image and Graphics, 2014, 19(2): 313-321. [周雨薇,陈强,孙权森,等. 结合暗通道原理和双边滤波的遥感图像增强 [J]. 中国图象图形学报,2014, 19(2): 313-321.] [DOI:10.11834/jig.20140218]
[6]  Agaian S, Panetta K P, Grigoryan A M. Transform based image enhancement algorithms with performance measure [J]. IEEE Transactions on Image Processing, 2001, 10(3): 367-380.
[7]  Bhanu B, Peng J, Huang T, et al. Introduction to the special issue on learning in computer vision and pattern recognition [J]. IEEE Trans. on Systems, Man, and Cybern. Part B: Cybern, 2005, 35(3): 391-396.
[8]  Agaian S S, Silver B, Panetta K A. Transform coefficient histogram-based image enhancement algorithms using contrast entropy [J]. IEEE Transactions on Image Processing, 2007, 16(3): 741-758.
[9]  Xia J J, Panetta K A, Agaian S. Color image enhancement algorithm based on logarithmic transform coefficient histogram shifting [C]//Proceedings of SPIE. San Francisco, USA: SPIE-INT SOC OPTICAL ENGINEERING, 2011, 7870: 1-10.
[10]  Xia J, Panetta K, Agaian S. Wavelet transform coefficient histogram-based image enhancement algorithms [C]//Proceedings of SPIE. Orlando, USA: SPIE-INT SOC OPTICAL ENGINEERING, 2010, 7708: 1-12.
[11]  Wharton E, Agaian S, Panetta K. Adaptive multi-histogram equalization using human vision thresholding [C]//Proceedings of SPIE. California, USA: SPIE-INT SOC OPTICAL ENGINEERING, 2007, 6497: 64970-64975.
[12]  Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[13]  Fedorovskaya E A, de Ridder H, Blommaert F J J. Chroma variations and perceived quality of color images of natural scenes [J]. Color Research and Application, 1997, 22(2): 96-110.
[14]  Yendrikhovskij S N, Blommaert F J J, de Ridder H. Optimizing color reproduction of natural images [C]// Proceedings of the 6th Color Imaging Conference: Color Science, Systems, and Applications. New York, USA: Society for Imaging Science and Technology, 1998, 140-145.
[15]  Lin W, Dong L, Xue P. Visual distortion gauge based on discrimination of noticeable contrast changes [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(7): 900-909.
[16]  Lin W S, Kuo C C J. Perceptual visual quality metrics: a survey [J]. J. Visual Communication and Image Representation, 2011, 22(4): 297-312.
[17]  Ma L, Deng C W, Ngan K N, et al. Recent advances and challenges of visual signal quality assessment [J]. China Communications, Special Issue on Future Video Technology, 2013, 10(5): 62-78.
[18]  Wharton E, Panetta K, Agaian S. Human visual system based multi-histogram equalization for non-uniform illumination and shadow correction [C]// Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu, Hawaii, USA: IEEE Computer Society, 2007, 1: 729-732.
[19]  Hu Q, Wang R G, Hu W W, et al. Color image enhancement based on histogram segmentation [J]. Journal of Image and Graphics, 2009, 14(9):1776-1781. [胡琼, 汪荣贵, 胡韦伟,等. 基于直方图分割的彩色图像分割算法[J]. 中国图象图形学报,2009, 14(9):1776-1781.] [DOI:10.11834/jig.20090910]
[20]  Xu B L, Zhuang Y Q, Tang H L, et al. Object-based multilevel contrast stretching method for image enhancement [J]. IEEE Transactions on Consumer Electronics, 2010, 56(3): 1746-1754.
[21]  Atta R, Ghanbari M. Low-contrast satellite images enhancement using discrete cosine transform pyramid and singular value decomposition [J]. IEEE Transactions on Image Processing, 2013, 7(5): 472-483.
[22]  Demirel H, Ozcinar C, Anbarjafari G. Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition [J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7: 333-337.
[23]  Horiuchi T, Watanabe K, Tominaga S. Adaptive filtering for color image sharpening and denoising [C]// Proceedings of the 14th International Conference of Image Analysis and Processing. Washington DC, USA: IEEE Computer Society, 2007: 196-201.
[24]  Lee J, Lee C. Fast and efficient panchromatic sharpening [J]. IEEE Transactions on Geosciences\' and Remote Sensing, 2010, 48(1): 155-163.
[25]  更多...
[26]  Russo F. An image enhancement technique combining sharpening and noise reduction [J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(4): 824-828.
[27]  Bettahar S, Stambouli A B, Lambert P, et al. PDE-Based enhancement of color images in RGB space [J]. IEEE Transactions on Image Processing, 2012, 21(5): 2500-2512.
[28]  Mukhopadhyay J, Mitra S K. Color enhancement in the compressed domain [C]// Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, California, USA: IEEE Press, 2008, 3144-3147.
[29]  Vu C, Phan T, Banga P, et al. On the quality assessment of enhanced images: a database, analysis, and strategies for augmenting existing methods [C]// IEEE Southwest Symposium on Image Analysis and Interpretation. Santa Fe, New Mexico, USA: IEEE, 2012, 181-184.
[30]  Chen G H, Yang C L, Po L M. Edge-Based structural similarity for image quality assessment [C]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse, France: IEEE Institute of Electrical and Electronics Engineers, 2006, 2: 933-936.
[31]  Liu A, Lin W, Narwaria M. Image quality assessment base on gradient similarity [J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500-1512.
[32]  Wu J J, Lin W S, Shi G M, et al. Reduced-reference image quality assessment with visual information fidelity [J]. IEEE Transactions on Multimedia, 2013, 15(7): 1700-1705.
[33]  Hunt R W G. The Reproduction of Colour 6th ed. [M]. Hoboken: John Wiley, 2004.
[34]  Kim M H, Weyrich T, Kautz J. Modeling human color perception under extended luminance levels [J]. ACM Transactions on Graphics, 2009, 28 (3): 1531326-1531333.
[35]  Sheikh H R, Bovik A C. Image information and visual quality [J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
[36]  Larson E C, Chandler D M. Most apparent distortion: full-reference image quality assessment and the role of strategy [J]. Journal of Electronic Imaging, 2010, 19(1): 1-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133