全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于蛙跳算法的离散粒子群优化端元提取

DOI: 10.11834/jig.20150515

Keywords: 离散粒子群优化,蛙跳算法,端元提取,高光谱遥感,局部收敛

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对离散粒子群优化(D-PSO)端元提取算法易“早熟”,易陷入局部最优解等问题,引入蛙跳算法,提出了基于蛙跳算法的离散粒子群优化(SFLA-DPSO)端元提取算法.方法该算法把粒子群分成若干族群,先在每个族群内进行深度寻优,然后在族群间完成信息交流,实现了SFLA算法的全局性、并行性与D-PSO算法的快速收敛性相结合,进而避免粒子陷入局部最优解.分别用SFLA-DPSO、D-PSO和SMACC对云南普朗地区Hperion高光谱影像提取端元;同时,在Hperion和AVIRIS高光谱影像的可行解搜索空间内,分别用SFLA-DPSO、D-PSO和N-FINDR提取端元,借助统计学理论分析计算两种算法在不同迭代次数下达到全局收敛的概率.结果当达到一定迭代次数后,SFLA-DPSO出现全局收敛的概率基本达到100%,而D-PSO却仅在65%左右,因此SFLA-DPSO算法具有较高的可信度.结论从而认为SFLA-DPSO克服局部收敛的能力更强,表现出良好的稳定性.

References

[1]  Cui B G, Zhang J, Ma Y, et al. High-resolution image-assisted endmember extraction of hyperspectral image[J]. Journal of Remote Sensing, 2014, 18(1):192-205.[崔宾阁,张杰,马毅,等.高分辨率图像辅助提取高光谱图像端元[J].遥感学报,2014,18(1):192-205.] [DOI: 10.11834/jrs.20133067]
[2]  Boardman JW, Kruse F A, Green R O.Mapping target signatures via partial unmixing of AVIRIS data[C]//Proceedings of the 5th Annual JPL Airborne Earth Science Workshop. Pasadena, USA: JPL, 1995: 23-26.
[3]  Dowler S,Andrews M. On the Convergence of N-FINDR and Related Algorithms: To Iterate or Not to Iterate? [J].Geosciences and Remote Sensing Letters,2011, 8(1):4-8.[DOI: 10.1109/LGRS.2010.2049639]
[4]  NascimentoJ M P,BioucasDias J M.Vertex component analysis: a fast algorithm to unmixhyperspectraldata [J].IEEE Transactionson Geoscience and Remote Sensing,2005,43(4):898-910. [DOI: 10.1109/TGRS.2005.844293]
[5]  Gruninger J H,Ratkowski A J,Hoke M L.The sequential maximum angle convex cone(SMACC)endmembermodel [C]//Proceedings of SPIE.Orlando,FL,USA:SPIE,2004,5425(1): 5425-5432. [DOI: 10.1117/12.543794]
[6]  Li E S, Zhu X L, Zhou X M, et al. The development and comparison of endmember extraction algorithms using hyperspectral imagery[J]. Journal of Remote Sensing, 2011, 15(4):659-679.[李二森,朱述龙,周晓明,等.高光谱图像端元提取算法研究进展与比较[J].遥感学报,2011,15(4):659-679.]
[7]  Chen Z X, Wu W B. A review on endmember extraction algorithms based on the linear mixing model[J]. Science of Surveying and Mapping, 2008, 33(S1):49-51.[陈子玄,武文波.基于线性混合模型的端元提取方法综述[J].测绘科学,2008,33(S1):49-51.] [DOI: 10.3771/j.issn.1009-2307. 2008. 07.018]
[8]  Neville R A,Staenz K,Szeredi T.Automatic endmember extraction from hyperspectral data for mineral exploration[C]// The 21st Canadian Symposium.Ottawa,Canada: Remote Sensing,1999:21-24.
[9]  Lee DD,Seung H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791.
[10]  Yang K M, Liu S W, Wang L W, et al. An algorithm of spectral minimum shannon entroy on extracting endmember of hyperspectral image[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2229-2233.[杨可明,刘士文,王林伟,等.光谱最小信息熵的高光谱影像端元提取算法[J].光谱学与光谱分析,2014,34(8):2229-2233.] [DOI: 10.3964/j.issn.1000 0593(2014)08 2229 05]
[11]  Zhang B, Sun X, Gao L R, et al. A method of endmember extraction in hyperspectral remote sensing image based on discrete particle swarm optimization(D-PSO)[J]. Spectroscopy and Spectral Analysis, 2011,31(9): 2455-2461.[张兵,孙旭,高连如,等.一种基于离散粒子群优化算法的高光谱图像端元提取方法[J].光谱学与光谱分析,2011,31(9):2455-2461.] [DOI: 10.3964/j.issn.1000-0593(2011)09-2455-07]
[12]  Eusuff M,Lansey K E.Optimization of water distribution network design using the shuffled frog leaping algorithm[J].Water Resources Planning and Management,2003,129(3):210-225.[DOI:10.1061/(ASCE)0733-9496(2003)129:3(210)]
[13]  Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of the IEEE International Conference.Perth,Western Australia: Neural Networks,1995,4:1942-1948. [DOI: 10.1109/ICNN.1995.488968]
[14]  Kennedy J.The particle swarm: social adaptation of knowledge[C]//Proceedings of IEEE International Conference. Indianapolis,Indiana:Evolu-tionary Computation,1997, 303-308. [DOI: 10. 1109/ICEC.1997.592326]
[15]  Wang L G,Liu D F,Wang Q M.Geometric method of fully constrained least squares linear spectral mixture analysis[J].IEEE Transactions on Geosciences and Remote Sensing,2013,51(6):3558-3566. [DOI: 10.1109/TGRS.2012.2225841]
[16]  Chang C,Du Q.Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J]. IEEE Transactions on Geosciences and Remote Sensing,2004,42(3):608-619. [DOI: 10.1109/TGRS.2003.819189]
[17]  Green A A,Berman M,Switzer B,et al.A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J].IEEE Transactions on Geosciences and Remote Sensing,1998,26(1):65-74. [DOI: 10.1109/36.3001]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133