Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41): 4135-4195.
[2]
Kasik D J, Buxton W, Ferguson D R. Ten CAD challenges[J]. IEEE Computer Graphics and Applications, 2005, 25(2): 81-92.
[3]
Bazilevs Y, Calo V M, Cottrell J A, et al. Isogeometric analysis using T-Splines[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 229-263.
[4]
Qian X. Full analytical sensitivities in NURBS based isogeometric shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(6):2059-2071.
[5]
Lu J. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact[J]. Comput. Methods Appl. Mech. Engrg., 2011, 200(5-8):726-741.
[6]
Kim H, Seo Y, Youn S. Isogeometric analysis with trimming technique for problems of arbitrary complex topology[J]. Comput. Methods Appl.Mech.Engrg., 2010,199(45-48): 2796-2812.
[7]
Xu G,Bernard M, Régis D, et al. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications[J]. Computer-Aided Design, 2013, 45(2):395-404.
[8]
Aigner M, Heinrich C, Juttler B, et al. Swept volume parametrization for isogeometric analysis[C]//Proceedings of Conference on the Mathematics of Surface. Berlin: Springer, 2009: 19-44.
[9]
Goyal M, Murugappan S, Piya C, et al. Towards locally and globally shape-aware reverse 3D modeling[J]. Computer Aided Design, 2012, 44(4): 537-553.
[10]
Martin T, Cohen E. Volumetric parameterization of complex objects by respecting multiple materials[J]. Computers & Graphics, 2010, 34(9): 187-197.
[11]
Zhang Y, Wang W, Hughes T J R. Solid T-spline construction from boundary representations for genus-zero geometry[J]. Comput. Methods Appl. Mech. Engrg., 2012, 249-252: 186-197.
[12]
Wang K, Li X, Li B, et al. Restricted trivariate polycube splines for volumetric data modeling[J]. IEEE Trans. Vis. Comp. Graphics, 2011,18(5):703-716.
[13]
Xu H Q, Xu G, Hu W H, et al. Generation method of B-spline parametric volumes for Isogeometric analysis[J]. Journal of Graphics, 2013,34(3):43-48.[许华强,徐岗,胡维华,等. 面向等几何分析的B样条参数体生成方法[J]. 图学学报,2013,34(3):43-48.]
[14]
Martin T, Cohena E, Kirbya R M. Volumetric parameterization and trivariate B-spline fitting using harmonic functions[J].Computer Aided Geometric Design,2009,26(6):648-664.
[15]
Nguyen T, Jüttler B. Parameterization of contractible domains using sequences of harmonic maps[C]//Proceedings of the 7th International Conference on Curves and Surfaces. Berlin: Springer-Verlag: 501-514.
[16]
Xu G, Mourrain B, Duvigneau R, et al. Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method[J]. Journal of Computational Physics, 2013,252(2):275-289
[17]
Lazarus F, Verroust A. Level set diagrams of polyhedral objects[C]//The 5th ACM Symposium on Solid Modeling and Applications. New York, NY, USA: ACM, 1999: 130-140.
[18]
Dong S, Kircher S, Garland M. Harmonic functions for wuadrilateral remeshing of arbitrary manifolds[J].Computer Aided Geometric Design, 2005, 22(5):392-423.
[19]
G X, Wang Y, Yau S. Volumetric harmonic map[J]. Commun. Inform. Syst., 2003, 3(3):191-202.
[20]
Li X, Guo X, Wang H, et al. Harmonic volumetric mapping for solid modeling applications[C]//Symposium on Solid and Physical Modeling. New York, USA: ACM, 2007:109-120.
[21]
更多...
[22]
Morken K. Some identities for products and degree raising of splines[J]. Construct. Approx., 1991, 7(1):195-208.
[23]
Provatidis C G. Three-dimensional Coons macro elements: application to eigenvalue and scalar wave propagation problems[J]. Int. J. Numer. Meth. Engng., 2006, 65: 111-134.