全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

体参数化模型离散调和映射生成

DOI: 10.11834/jig.20150414

Keywords: 体参数化,控制点设定,调和映射,网格质量

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的体参数化模型具有诸多优良特性和广泛的应用前景,如何生成有效的体参数化模型是迫切需要解决的问题.方法首先定义了样条体参数化模型表达式,提出控制点设定是体参数化的核心问题.给定6个表面样条曲面的控制点,从计算域到参数域的调和映射方程的差分形式出发,给出了生成体参数化模型控制点的方法.提出雅克比矩阵和等参网两种方法用以检测体参数化模型的网格质量.结果基于点云模型,构建了体参数化模型,且将该方法与离散孔斯插值法、凸组合插值法两种方法生成的体参数化模型网格质量进行了对比.结果表明,离散调和函数法生成的体参数化模型相对更为稳定与优化.结论离散调和映射能初步生成体参数化模型,但需要进一步优化并提供了良好初始化条件.

References

[1]  Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41): 4135-4195.
[2]  Kasik D J, Buxton W, Ferguson D R. Ten CAD challenges[J]. IEEE Computer Graphics and Applications, 2005, 25(2): 81-92.
[3]  Bazilevs Y, Calo V M, Cottrell J A, et al. Isogeometric analysis using T-Splines[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8): 229-263.
[4]  Qian X. Full analytical sensitivities in NURBS based isogeometric shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(6):2059-2071.
[5]  Lu J. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact[J]. Comput. Methods Appl. Mech. Engrg., 2011, 200(5-8):726-741.
[6]  Kim H, Seo Y, Youn S. Isogeometric analysis with trimming technique for problems of arbitrary complex topology[J]. Comput. Methods Appl.Mech.Engrg., 2010,199(45-48): 2796-2812.
[7]  Xu G,Bernard M, Régis D, et al. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications[J]. Computer-Aided Design, 2013, 45(2):395-404.
[8]  Aigner M, Heinrich C, Juttler B, et al. Swept volume parametrization for isogeometric analysis[C]//Proceedings of Conference on the Mathematics of Surface. Berlin: Springer, 2009: 19-44.
[9]  Goyal M, Murugappan S, Piya C, et al. Towards locally and globally shape-aware reverse 3D modeling[J]. Computer Aided Design, 2012, 44(4): 537-553.
[10]  Martin T, Cohen E. Volumetric parameterization of complex objects by respecting multiple materials[J]. Computers & Graphics, 2010, 34(9): 187-197.
[11]  Zhang Y, Wang W, Hughes T J R. Solid T-spline construction from boundary representations for genus-zero geometry[J]. Comput. Methods Appl. Mech. Engrg., 2012, 249-252: 186-197.
[12]  Wang K, Li X, Li B, et al. Restricted trivariate polycube splines for volumetric data modeling[J]. IEEE Trans. Vis. Comp. Graphics, 2011,18(5):703-716.
[13]  Xu H Q, Xu G, Hu W H, et al. Generation method of B-spline parametric volumes for Isogeometric analysis[J]. Journal of Graphics, 2013,34(3):43-48.[许华强,徐岗,胡维华,等. 面向等几何分析的B样条参数体生成方法[J]. 图学学报,2013,34(3):43-48.]
[14]  Martin T, Cohena E, Kirbya R M. Volumetric parameterization and trivariate B-spline fitting using harmonic functions[J].Computer Aided Geometric Design,2009,26(6):648-664.
[15]  Nguyen T, Jüttler B. Parameterization of contractible domains using sequences of harmonic maps[C]//Proceedings of the 7th International Conference on Curves and Surfaces. Berlin: Springer-Verlag: 501-514.
[16]  Xu G, Mourrain B, Duvigneau R, et al. Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method[J]. Journal of Computational Physics, 2013,252(2):275-289
[17]  Lazarus F, Verroust A. Level set diagrams of polyhedral objects[C]//The 5th ACM Symposium on Solid Modeling and Applications. New York, NY, USA: ACM, 1999: 130-140.
[18]  Dong S, Kircher S, Garland M. Harmonic functions for wuadrilateral remeshing of arbitrary manifolds[J].Computer Aided Geometric Design, 2005, 22(5):392-423.
[19]  G X, Wang Y, Yau S. Volumetric harmonic map[J]. Commun. Inform. Syst., 2003, 3(3):191-202.
[20]  Li X, Guo X, Wang H, et al. Harmonic volumetric mapping for solid modeling applications[C]//Symposium on Solid and Physical Modeling. New York, USA: ACM, 2007:109-120.
[21]  更多...
[22]  Morken K. Some identities for products and degree raising of splines[J]. Construct. Approx., 1991, 7(1):195-208.
[23]  Provatidis C G. Three-dimensional Coons macro elements: application to eigenvalue and scalar wave propagation problems[J]. Int. J. Numer. Meth. Engng., 2006, 65: 111-134.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133