Gershon N D. Visualization of fuzzy data using generalized animation [C]//Proceedings of the 3rd Conference on Visualization \'92. Los Alamitos, CA: IEEE Computer Society Press, 1992: 268-273. [DOI: 10.1109/VISUAL.1992.23 5199]
[2]
Lodha S K, Wilson C M, Sheehan R E. Listen: Sounding uncertainty visualization [C]//Proceedings of the 7th Conference on Visualization \'96. Los Alamitos, CA: IEEE Computer Society Press, 1996: 189-196. [DOI: 10.1109/VISUAL.1996.568105]
[3]
Kosara R. Semantic depth of field using blur for focus+context visualization [D]. Vienna: Vienna University of Technology, 2001.
[4]
Ludscher B, Lin K, Bowers S, et al. Managing scientific data: from data integration to scientific workflows [J]. GSA Today In Geoinformatics: Data to Knowledge, 2006: 109-130.
[5]
Blackwell A F. SWYN: a visual representation for regular expressions [C]//Proceedings of Your Wish Is My Command: Programming by Example. San Francisco, USA: Morgan Kaufmann, 2001: 245-270.
[6]
Scaffidi C, Myers B, Shaw M. Intelligently creating and recommending reusable reformatting rules [C]//Proceedings of ACM IUI. Sanibel Island, Florida, USA: ACM, 2009: 297-306.
[7]
Huynh D F, Miller R C, Karger D R. Potluck: semi-ontology alignment for casual users [C]//Proceedings of ISWC. Berlin: Springer, 2007: 903-910. [DOI: 10. 1.1.107.547]
[8]
Tuchinda R, Szekely P, Knoblock C A. Building mashups by example [C]//Proceedings of ACM IUI. Berlin: Springer, 2008: 139-148. [DOI: 10.1145/13 78773. 1378792]
[9]
Lin J, Along J, Nichols J, et al. End-user programming of mashups with vegemite [C]//Proceedings of IUI. Berlin Heidelberg: Springer, 2009: 97-106. [DOI:10.1145 /1502650.150 2667]
[10]
Leshed G, Haber E M, Matthews T, et al. CoScripter: automating & sharing how-to knowledge in the enterprise [C]//Proceedings of ACM CHI. Florence, Italy: ACM, 2008: 1719-1728. [DOI: 10.1145/135 7054.1357323]
[11]
Arasu A, Garcia-Molina H. Extracting structured data from web pages [C]//Proceedings of ACM SIGMOD. San Diego, CA: ACM, 2003: 337-348. [DOI: 10.1145/8727 57.872799]
[12]
Soderland S. Learning information extraction rules for semistructured and free text [J]. Mach. Learn., 1999, 34: 233-272. [DOI: 10.1023/A:1007 562322031]
[13]
Kandel S, Paepcke A, Hellerstein J, et al. Wrangler: interactive visual specification of data transformation scripts [C]//Proceedings of ACM Human Factors in Computing Systems. Vancouver, BC, Canada: ACM, 2011. [DOI: 10. 1145/1978942.1979444]
[14]
Benjelloun O, Garcia-Molina H, Menestrina D, et al. Swoosh: a generic approach to entity resolution [C]//Proceedings of VLDB. New York, USA: ACM Press, 2009: 255-276. [DOI: 10.1007 /s00778-008-0098-x]
[15]
Cafarella M J, Halevy A, Wang D Z, et al. Webtables: exploring the power of tables on the web [C]//Proceedings of PVLDB. Auckland, New Zealand: ACM, 2008, 1(1): 538-549. [DOI: 10.14778/1453856.1453916]
[16]
Informatica. The informatica data quality methodology: a framework to achieve pervasive data quality through enhanced business-IT collaboration [EB/OL]. 2010-7-8[2014-08-17]. http://www.Informatica.com/downloads/7130-DQ-Methodology-wp-web.pdf.
[17]
Callahan S P, Freire J, Santos E, et al. Vistrails: visualization meets data management [C]//Proceedings of 2006 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM, 2006: 745-747. [DOI: 10.1145/ 1142473.1142574]
[18]
Miller R C, Myers B A. Interactive simultaneous editing of multiple text regions [C]//Proceedings of USENIX Technical Conference. Boston, Massachusetts, USA: USENIX Association, 2001: 161-174.
[19]
Sean K, Jeffrey H, Catherine P, et al. Research directions in data wrangling: visualizations and transformations for usable and credible data [J]. Information Visualization, 2011, 10(4): 271-288. [DOI: 10.1177/147387161415994]
[20]
Bhattacharya I, Getoor L. Collective entity resolution in relational data [C]//Proceedings of ACM Transactions on Knowledge Discovery in Data. Berlin, Germany: Springer, 2007, 1(1). [DOI: 10.1145/1217299.1217 304]
[21]
Elmagarmid A K, Ipeirotis P G, Verykios V S. Duplicate record detection: a survey [J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(1): 1-16. [DOI: 10.1109/TKDE.2007.9]
[22]
Gravano L, Ipeirotis P G, Jagadish H V, et al. Using qgrams in a dbms for approximate string processing [J]. IEEE Data Engineering Bulletin, 2001, 24(4): 28-34. [DOI: 10.1.1.14.6009]
[23]
Sarawagi S, Bhamidipaty A. Interactive deduplication using active learning [C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Alberta, Canada: ACM, 2002: 1-10. [DOI: 10.1145/775047. 775087]
[24]
Robertson G G, Czerwinski M P, Churchill J E. Visualization of mappings between schemas [C]//Proceedings of SIGCHI Conference on Human Factors in Computing Systems. Portland, Oregon, USA: ACM, 2005: 431-439. [DOI:10.1145/10549 72. 1055032]
[25]
Kang H, Getoor L, Shneiderman B, et al. Interactive entity resolution in relational data: a visual analytic tool and its evaluation [J]. IEEE Trans. Vis. Comput. Graph., 2008, 14(5): 999-1014. [DOI: 10.1109/TVCG.2008.55]
[26]
Huynh D, Mazzocchi S. Freebase GridWorks [CP]. http://code.google.com/p/google-refine/.
[27]
Raman V, Hellerstein J M. Potter\'s wheel: an interactive data cleaning system [C]//Proceedings of the 27th International Conference on Very Large Data Bases. Roma, Italy: Morgan Kaufmann, 2001: 381-390.
[28]
Li L, Peng T, Kennedy J. Improving data quality in data warehousing applications [C]//Proceedings of the 12th International Conference on Enterprise Information Systems. Funchal, Madeira, Portugal: SciTePress, 2010: 211-219.
[29]
Kim W, Choi B J, Hong E K, et al. A taxonomy of dirty data [J]. Data Mining and Knowledge Discovery, 2003, 1(7): 81-99. [DOI: 10.1023/A: 102156 4703268]
[30]
Müller H, Freytag J C. Problems, methods and challenges in comprehensive data cleansing, Technical Report HUB-IB-164 [R]. Humboldt-Universit?t zu Berlin, Berlin, Germany: Institut für Informatik, 2003.
[31]
Keim D A. Designing pixel-oriented visualization techniques: theory and applications [J]. IEEE Trans. Visual. Comput. Graph., 2000, 6(1): 59-78. [DOI: 10.1109/2945.841121]
[32]
Carr D B, Littlefield R J, Nicholson W L, et al. Scatterplot matrix techniques for large N [J]. Am. Stat. Assoc., 1987, 82: 424-436. [DOI: 10.2307/ 2289444]
[33]
Utwin A, Theus M, Hofmann H. Graphics of Large Datasets: Visualizing a Million [M]. Berlin: Springer, 2006. [DOI: 10.1198/tas.2008.s103]
[34]
Hellerstein J M, Haas P J, Wang H J. Online aggregation [C]//Proceedings of ACM SIGMOD. Tucson, USA: ACM, 1997: 171-182. [DOI: 10. 1145/253260.253291]
[35]
Twiddy J C, Shiri S M. Restorer: a visualization technique for handling missing data [C]//Proceedings of IEEE Visualization. Austin, USA: IEEE, 2004: 212-216.
[36]
Eaton C, Plaisant C, Drizd T. The challenge of missing and uncertain data [C]//Proceedings of 4th IEEE Visualization 2003. Washington DC, USA: IEEE Computer Society, 2003: #100. [DOI: 10. 1109/VIS.2003.10029]
[37]
MacEachren A M, Robinson A, Gardner S, et al. Visualizing geospatial information uncertainty: What we know and what we need to know [J]. Cartogr. Geogr. Inform. Sci., 2005, 32:139-160. [DOI: 10.1559/1523040054738936]
[38]
Skeels M, Lee B, Smith G, et al. Revealing uncertainty for information visualization [C]//Proceedings of Inform Visual. Napoli, Italy: SAGE, 2010, 9:70-81. [DOI: 10.1057/ivs.2009. 1]
[39]
更多...
[40]
Correa C, Chan Y H, Ma K I. A framework for uncertainty aware visual analytics [C]//Proceedings of IEEE Visual Analytics Science and Technology. Atlantic City, New Jersey: IEEE, 2009: 51-58. [DOI:10.1109/VAST.2009.5332611]
[41]
Griethe H, Schumann H. The visualisation of uncertain data: Methods and problems [C]//Proceedings of SimVis. Magdeburg, Germany: SCS Publishing House, 2006: 143-156.
[42]
Olston C, Mackinlay J. Visualizing data with bounded uncertainty [C]//IEEE Symposium on Information Visualization. Stanford, USA: IEEE Computer Society Press, 2002: 37-40. [DOI: 10.1109/INFVIS.2002.11731 45]
[43]
Pang T, Wittenbrink C M, Lodha S K. Approaches to uncertainty visualization [J]. The Visual Computer, 1997, 13(8): 370-390. [DOI: 10.1007/ s003710050111]
[44]
Lee B, Robertson G G, Czerwinski M, et al. CandidTree: visualizing structural uncertainty in similar hierarchies [J]. Information Visualization, 2007, 6(3): 233-246. [DOI: 10.1057/palgrave.ivs. 9500157]
[45]
Grigoryan G, Rheingans P. Point-based probabilistic surfaces to show surface uncertainty [J]. IEEE Trans. Visual. Comput. Graph., 2004, 10(5): 564-573. [DOI: 10.1109/TVCG.2004. 30]
[46]
Doan A, Madhavan J, Dhamankar R, et al. Learning to match ontologies on the semantic web [C]//Proceedings of VLDB. New York, USA: ACM Press, 2003, 12(4): 303-319. [DOI: 10. 1007/s00778-003-0104-2]
[47]
Rahm E, Bernstein P A. A survey of approaches to automatic schema matching [C]//Proceedings of VLDB. New York, USA: ACM Press, 2001, 10(4): 334-350. [DOI: 10.1007/ s007780100057]
[48]
Haas L M, Hernandez M A, Ho H, et al. Clio grows up: from research prototype to industrial tool [C]//Proceedings of ACM SIGMOD. Baltimore, Maryland, USA: ACM Press, 2005: 805-810. [DOI: 10.1145/1066157.1066252]
[49]
Chiticariu L, Kolaitis P G, Popa L. Interactive generation of integrated schemas [C]//Proceedings of ACM SIGMOD. New York, USA: ACM, 2008: 833-846. [DOI:10.1145/1376616.13 76700]
[50]
Altova. Data Integration: Opportunities, challenges, and altova mapforce [EB/OL]. 2010-7-8[2014-08-17]. http://www.altova.com/whitepapers /mapforce.pdf
Ives Z G, Knoblock C A, Minton S, et al. Interactive data integration through smart copy & paste [C]//Proceedings of CIDR. Pacific Grove, CA: ACM Press, 2009.