Pack M L, Wongsuphasawat K, VanDaniker M, et al. ICE-visual analytics for transportation incident datasets [C]//Proceedings of IEEE International Conference on Information Reuse & Integration. Piscataway: IEEE Press, 2009: 200-205.
[2]
Chu D, Sheets D A, Zhao Y, et al. Visualizing hidden themes of taxi movement with semantic transformation [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2014: 137-144.
[3]
Anwar A, Nagel T, Ratti C. Traffic origins: a simple visualization technique to support traffic incident analysis [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2014: 316-319.
[4]
Wang F, Chen E, Wu F F, et al. A visual reasoning approach for data-driven transport assessment on urban road [C]//IEEE Symposium on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2014.
[5]
Trestian I, Hugueninz K, Su L, et al. Understanding human movement semantics: A point of interest based approach [C]//Proceedings of the 21st International Conference Companion on World Wide Web. New York: ACM Press, 2012: 619-620.
[6]
Trestian I, Ranjan S, Kuzmanovic A, et al. Taming the mobile data deluge with drop zones [J]. IEEE/ACM Transactions on Networking, 2012, 20(4): 1010-1023.
[7]
Krueger R, Thom D, Ertl T. Visual analysis of movement behavior using web data for context enrichment [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2014: 193-200.
[8]
Krueger R, Thom D, W?rner M, et al. TrajectoryLenses: a set-based filtering and exploration technique for long-term trajectory data [J]. Computer Graphics Forum, 2013, 32(3-4): 451-460.
[9]
Sun G D, Liu Y, Wu W B, et al. Embedding temporal display into maps for occlusion-free visualization of spatio-temporal data [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2014: 185-192.
[10]
Nagel T, Maitan M, Duval E, et al. Touching transport-a case study on visualizing metropolitan public transit on interactive tabletops [C]//Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces. New York: ACM Press, 2014: 281-288.
[11]
Mai E, Backman M, Hranac R. Visualizing bus schedule adherence and passenger load through marey graphs [C/OL]//Proceedings of 18th World Congress on Intelligent Transportation Systems. [2014-08-19] http://www.ericmai.com/documents/VisualizingAdherenceAndPassengerLoad.pdf.
[12]
Hranac R, Kwon J Y, Bachmann M, et al. Using Marey Graphs to Visualize Transit Loading and Schedule Adherence [C/OL]//Proceedings of 90th Annual Meeting of the Transportation Research Board. [2014-08-19] http://assets.conferencespot.org/fileserver/file/32554/filename/12jkq8.pdf.
[13]
Du F, Brule J, Enns P, et al. MetroViz: visual analysis of public transportation data [EB/OL]. [2014-08-19] https://wiki.cs.umd.edu/cmsc734_f13/images/6/60/MetroViz_final_paper.pdf.
[14]
Itoh M, Yokoyama D, Toyoda, M, et al. Visualization of passenger flows on metro [EB/OL]. [2014-08-19] http://www.tkl.iis.u-tokyo.ac.jp/top/modules/newdb/extract/1303/data/VAST2013_1.pdf.
[15]
Gao Y, Xu P P, Lu L, et al. Visualization of taxi drivers\' income and mobility intelligence [C]//Proceedings of 8th International Advances in Visual Computing. Berlin Heidelberg: Springer, 2012: 275-284.
[16]
Liu H, Gao Y, Lu L, et al. Visual analysis of route diversity [C]//Proceedings of IEEE Conference on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2011: 171-180.
[17]
VanDaniker M. Visualizing real-time and archived traffic incident data [C]//Proceedings of IEEE International Conference on Information Reuse & Integration. Piscataway: IEEE Press, 2009: 206-211.
[18]
He X G. Visual analytics of road traffic with large scale taxi GPS data [D]. Hangzhou: Zhejiang University of Technology, 2013.[何贤国. 出租车GPS大数据可视化研究[D]. 杭州:浙江工业大学, 2013.]
[19]
Wang Z C, Lu M, Yuan X R, et al. Visual traffic jam analysis based on trajectory data [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2159-2168.
[20]
He X G, Sun G D, Gao J Q, et al. Visual analytics of road traffic with large scale taxi GPS data [J]. Journal of Computer-Aided Graphics and Computer Graphics, 2014, 26(12): 2163-2172. [何贤国,孙国道,高家全,等. 出租车GPS大数据的道路行车可视分析[J]. 计算机辅助设计与图形学学报,2014,26(12):2163-2172.]
[21]
White C E, Bernstein D, Kornhauser A L. Some map matching algorithms for personal navigation assistants [J]. Transportation Research Part C: Emerging Technologies, 2000, 8(1-6):91-108.
[22]
Quddus M A, Ochieng W Y, Noland R B. Current map-matching algorithms for transport applications: state-of-the art and future research directions [J]. Transportation Research Part C: Emerging Technologies, 2007, 15(5): 312-328.
[23]
Lou Y, Zhang C Y, Zheng Y, et al. Map-Matching for Low-Sampling-Rate GPS Trajectories [C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2009: 352-361.
[24]
Yuan J, Zheng Y, Zhang C Y, et al. An interactive-voting based map matching algorithm[C]//Proceedings of the 11th International Conference on Mobile Data Management. Piscataway: IEEE Press, 2010: 43-52.
[25]
Liu S Y, Pu J S, Luo Q, et al. VAIT: a visual analytics system for metropolitan transportation [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1586-1596.
[26]
Andrienko G, Andrienko N, Wrobel S. Visual analytics tools for analysis of movement data [J]. ACM SIGKDD Explorations Newsletter, 2007, 9(2): 38-46.
[27]
Ankerst M, Breunig M M, Kriegel H P, et al. OPTICS: ordering points to identify the clustering structure [C]//Proceedings of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1999: 49-60.
[28]
Wang Z C, Guo H Q, Yuan X R, et al. Discovery exhibition: visual analysis on traffic trajectory data [EB/OL]. [2014-08-19] http://www.discoveryexhibition.org/uploads/Main/2011Wang.pdf.
[29]
Andrienko G, Andrienko N, Wrobel S. Spatio-temporal aggregation for visual analysis of movements [C]//IEEE Symposium on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2008: 51-58.
[30]
Tominski C, Schumann H, Andrienko G, et al. Stacking-based visualization of trajectory attribute data [J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2565-2574.
[31]
Andrienko G, Andrienko N. Poster: dynamic time transformation for interpreting clusters of trajectories with space-time cube [C]//IEEE Symposium on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2010: 213-214.
[32]
Pu J S, Liu S Y, Ding Y, et al. T-watcher: a new visual analytic system for effective traffic surveillance [C]//Proceedings of the 14th International Conference on Mobile Data Management. Piscataway: IEEE Press, 2013: 127-136.
[33]
Ferreira N, Poco J, Vo H T, et al. Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2149-2158.
[34]
Guo H Q, Wang Z C, Yu B W, et al. Tripvista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2011: 163-170.
[35]
von Landesberger T, Bremm S, Andrienko N, et al. Visual analytics methods for categoric spatio-temporal data [C]//Proceedings of IEEE Conference on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2012: 183-192.
[36]
Andrienko G, Andrienko N, Hurter C, et al. From movement tracks through events to places: extracting and characterizing significant places from mobility data [C]//Proceedings of IEEE Conference on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2011: 161-170.
[37]
Andrienko G, Andrienko N, Hurter C, et al. Scalable analysis of movement data for extracting and exploring significant places [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7): 1078-1094.