全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

城市道路交通数据可视分析综述

DOI: 10.11834/jig.20150401

Keywords: 城市交通问题,可视分析,GPS轨迹数据,交通流量分析,交通事件分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的交通是困扰现代大都市的世界性难题.近年来,可视分析技术在分析和利用交通大数据中扮演了越来越重要的角色,成为一项重要的智能交通技术.本文将全面回顾自信息可视化和可视分析兴起以来城市交通数据可视分析领域的研究现状.方法从道路交通流量分析和其他交通问题分析两个方面,按照数据的类型及问题的分类探讨交通领域的可视化技术和可视分析系统,简单回顾近年来出现的研究新趋势.结果早期研究注重对道路流量的可视化展示方案,主要方法有箭头图、马赛克图和轨迹墙等.随着可视分析手段的丰富,对城市道路交通流量的分析层次上升到交通事件层面,但是交通事件的定义仅局限于交通拥堵.应用可视分析的其他交通问题领域包括公共交通、交通事故和人群出行行为等.近年出现了挖掘和利用交通轨迹或交通事件的社会属性或称环境上下文信息的研究新趋势.结论从对交通流量的可视化到交通事件的可视分析,从面向道路交通状况到与交通相关的其他社会性问题,从单纯反映路况的交通数据到富含社会性语义的多源数据,从传统的PC端可视化和交互范式到新型的可视化展示介质,交通数据可视化领域的研究在深度和广度上都得到大大拓展,未来该领域的研究趋势也体现于其中.

References

[1]  Pack M L, Wongsuphasawat K, VanDaniker M, et al. ICE-visual analytics for transportation incident datasets [C]//Proceedings of IEEE International Conference on Information Reuse & Integration. Piscataway: IEEE Press, 2009: 200-205.
[2]  Chu D, Sheets D A, Zhao Y, et al. Visualizing hidden themes of taxi movement with semantic transformation [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2014: 137-144.
[3]  Anwar A, Nagel T, Ratti C. Traffic origins: a simple visualization technique to support traffic incident analysis [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2014: 316-319.
[4]  Wang F, Chen E, Wu F F, et al. A visual reasoning approach for data-driven transport assessment on urban road [C]//IEEE Symposium on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2014.
[5]  Trestian I, Hugueninz K, Su L, et al. Understanding human movement semantics: A point of interest based approach [C]//Proceedings of the 21st International Conference Companion on World Wide Web. New York: ACM Press, 2012: 619-620.
[6]  Trestian I, Ranjan S, Kuzmanovic A, et al. Taming the mobile data deluge with drop zones [J]. IEEE/ACM Transactions on Networking, 2012, 20(4): 1010-1023.
[7]  Krueger R, Thom D, Ertl T. Visual analysis of movement behavior using web data for context enrichment [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2014: 193-200.
[8]  Krueger R, Thom D, W?rner M, et al. TrajectoryLenses: a set-based filtering and exploration technique for long-term trajectory data [J]. Computer Graphics Forum, 2013, 32(3-4): 451-460.
[9]  Sun G D, Liu Y, Wu W B, et al. Embedding temporal display into maps for occlusion-free visualization of spatio-temporal data [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2014: 185-192.
[10]  Nagel T, Maitan M, Duval E, et al. Touching transport-a case study on visualizing metropolitan public transit on interactive tabletops [C]//Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces. New York: ACM Press, 2014: 281-288.
[11]  Mai E, Backman M, Hranac R. Visualizing bus schedule adherence and passenger load through marey graphs [C/OL]//Proceedings of 18th World Congress on Intelligent Transportation Systems. [2014-08-19] http://www.ericmai.com/documents/VisualizingAdherenceAndPassengerLoad.pdf.
[12]  Hranac R, Kwon J Y, Bachmann M, et al. Using Marey Graphs to Visualize Transit Loading and Schedule Adherence [C/OL]//Proceedings of 90th Annual Meeting of the Transportation Research Board. [2014-08-19] http://assets.conferencespot.org/fileserver/file/32554/filename/12jkq8.pdf.
[13]  Du F, Brule J, Enns P, et al. MetroViz: visual analysis of public transportation data [EB/OL]. [2014-08-19] https://wiki.cs.umd.edu/cmsc734_f13/images/6/60/MetroViz_final_paper.pdf.
[14]  Itoh M, Yokoyama D, Toyoda, M, et al. Visualization of passenger flows on metro [EB/OL]. [2014-08-19] http://www.tkl.iis.u-tokyo.ac.jp/top/modules/newdb/extract/1303/data/VAST2013_1.pdf.
[15]  Gao Y, Xu P P, Lu L, et al. Visualization of taxi drivers\' income and mobility intelligence [C]//Proceedings of 8th International Advances in Visual Computing. Berlin Heidelberg: Springer, 2012: 275-284.
[16]  Liu H, Gao Y, Lu L, et al. Visual analysis of route diversity [C]//Proceedings of IEEE Conference on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2011: 171-180.
[17]  VanDaniker M. Visualizing real-time and archived traffic incident data [C]//Proceedings of IEEE International Conference on Information Reuse & Integration. Piscataway: IEEE Press, 2009: 206-211.
[18]  He X G. Visual analytics of road traffic with large scale taxi GPS data [D]. Hangzhou: Zhejiang University of Technology, 2013.[何贤国. 出租车GPS大数据可视化研究[D]. 杭州:浙江工业大学, 2013.]
[19]  Wang Z C, Lu M, Yuan X R, et al. Visual traffic jam analysis based on trajectory data [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2159-2168.
[20]  He X G, Sun G D, Gao J Q, et al. Visual analytics of road traffic with large scale taxi GPS data [J]. Journal of Computer-Aided Graphics and Computer Graphics, 2014, 26(12): 2163-2172. [何贤国,孙国道,高家全,等. 出租车GPS大数据的道路行车可视分析[J]. 计算机辅助设计与图形学学报,2014,26(12):2163-2172.]
[21]  White C E, Bernstein D, Kornhauser A L. Some map matching algorithms for personal navigation assistants [J]. Transportation Research Part C: Emerging Technologies, 2000, 8(1-6):91-108.
[22]  Quddus M A, Ochieng W Y, Noland R B. Current map-matching algorithms for transport applications: state-of-the art and future research directions [J]. Transportation Research Part C: Emerging Technologies, 2007, 15(5): 312-328.
[23]  Lou Y, Zhang C Y, Zheng Y, et al. Map-Matching for Low-Sampling-Rate GPS Trajectories [C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2009: 352-361.
[24]  Yuan J, Zheng Y, Zhang C Y, et al. An interactive-voting based map matching algorithm[C]//Proceedings of the 11th International Conference on Mobile Data Management. Piscataway: IEEE Press, 2010: 43-52.
[25]  Liu S Y, Pu J S, Luo Q, et al. VAIT: a visual analytics system for metropolitan transportation [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1586-1596.
[26]  Andrienko G, Andrienko N, Wrobel S. Visual analytics tools for analysis of movement data [J]. ACM SIGKDD Explorations Newsletter, 2007, 9(2): 38-46.
[27]  Ankerst M, Breunig M M, Kriegel H P, et al. OPTICS: ordering points to identify the clustering structure [C]//Proceedings of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1999: 49-60.
[28]  Wang Z C, Guo H Q, Yuan X R, et al. Discovery exhibition: visual analysis on traffic trajectory data [EB/OL]. [2014-08-19] http://www.discoveryexhibition.org/uploads/Main/2011Wang.pdf.
[29]  Andrienko G, Andrienko N, Wrobel S. Spatio-temporal aggregation for visual analysis of movements [C]//IEEE Symposium on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2008: 51-58.
[30]  Tominski C, Schumann H, Andrienko G, et al. Stacking-based visualization of trajectory attribute data [J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2565-2574.
[31]  Andrienko G, Andrienko N. Poster: dynamic time transformation for interpreting clusters of trajectories with space-time cube [C]//IEEE Symposium on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2010: 213-214.
[32]  Pu J S, Liu S Y, Ding Y, et al. T-watcher: a new visual analytic system for effective traffic surveillance [C]//Proceedings of the 14th International Conference on Mobile Data Management. Piscataway: IEEE Press, 2013: 127-136.
[33]  Ferreira N, Poco J, Vo H T, et al. Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2149-2158.
[34]  Guo H Q, Wang Z C, Yu B W, et al. Tripvista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection [C]//Pacific Visualization Symposium (PacificVis). Piscataway: IEEE Press, 2011: 163-170.
[35]  von Landesberger T, Bremm S, Andrienko N, et al. Visual analytics methods for categoric spatio-temporal data [C]//Proceedings of IEEE Conference on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2012: 183-192.
[36]  Andrienko G, Andrienko N, Hurter C, et al. From movement tracks through events to places: extracting and characterizing significant places from mobility data [C]//Proceedings of IEEE Conference on Visual Analytics Science and Technology. Piscataway: IEEE Press, 2011: 161-170.
[37]  Andrienko G, Andrienko N, Hurter C, et al. Scalable analysis of movement data for extracting and exploring significant places [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7): 1078-1094.
[38]  更多...

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133