全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可见光与红外图像区域级反馈融合算法

DOI: 10.11834/jig.20150406

Keywords: 图像融合,效果评估,非下采样轮廓波变换,分形特征,遗传算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的可见光图像具有丰富的纹理信息,红外图像具有较强的目标指示信息,进行融合时只有合理地设计融合规则才能充分利用两者的互补信息,为此,提出一种基于效果评估的可见光与红外图像区域级反馈融合算法.方法首先对待融合图像进行非下采样轮廓波变换(NSCT),将其分解为低频和高频部分.同时采用分形特征对红外图像进行人造目标增强,通过阈值分割得到目标区域与背景区域.在设计低频融合规则时,选取目标区域与背景区域的加权融合系数作为参数,根据图像融合效果评估的量化指标,运用遗传算法进行参数的优化求解.对高频部分采用基于区域的加权平均融合规则.最后,利用优化后的融合系数进行NSCT逆变换得到融合图像.结果采用3组图像,结合主观评价和客观评价指标对4种融合算法的结果进行了比较分析,实验结果表明,本文算法融合后图像更自然,目标更显著,客观评价结果总体上最优.结论本文算法有效结合了红外图像的目标信息与可见光图像的背景信息,融合图像具有更强的对比度,有利于进行战场态势显示和目标识别任务.

References

[1]  Zhao Z G, Xiong Z H, Wang K, et al. Conceptions, Methods and Applications on Information fusion[M]. Beijing: National Defense Industry Press, 2012: 282-291. [赵宗贵, 熊朝华, 王珂,等. 信息融合概念、方法与应用[M]. 北京: 国防工业出版社,2012: 282-291.]
[2]  Li S T, Yang B, Hu J W. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2): 74-84.
[3]  Zhang J L, Zhao E Y. Fusion method for infrared and visible light images based on NSCT[J]. Laser & Infrared, 2013, 43(3): 319-322. [张惊雷, 赵俄英. 基于NSCT的红外与可见光图像融合方法[J]. 激光与红外, 2013, 43(3): 319-322.]
[4]  Petrovic V, Cootes T. Objectively adaptive image fusion[J]. Information Fusion, 2007, 8(2): 168-176.
[5]  An H N, Qi Y L, Cheng Z Y. A novel image fusion method based on particle swarm optimization[C]//Advances in Wireless Networks and Information Systems. Berlin: Springer, 2010: 527-535.
[6]  Yang X H, Jia J, Jiao L C. Image fusion algorithm in nonsubsampled contourlet domain based on activity measure and closed loop feedback[J]. Journal of Electronics & Information Technology, 2010, 32(2): 422-426. [杨晓慧, 贾建, 焦李成. 基于活性测度和闭环反馈的非下采样Contourlet域图像融合[J]. 电子与信息学报, 2010, 32(2): 422-426.]
[7]  Raghavendra R, Dorizzi B, Rao A, et al. Particle swarm optimization based fusion of near infrared and visible images for improved face verification[J]. Pattern Recognition, 2011, 44(2): 401-411.
[8]  Li J, Nan X L, Bi S Y, et al. Image fusion based on an improved algorithm of multi-objective particle swarm optimization[J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43(1): 477-480. [李娟, 南旭良, 毕思远,等. 改进多目标粒子群优化算法及在图像融合中的应用[J]. 吉林大学学报: 工学版, 2013, 43(增刊1): 477-480.]
[9]  Deng C Z, Rao W. Shearlet based adaptive fusion of infrared and visible images[J]. Laser & Infrared, 2013,43(4): 399-403. [邓承志, 饶伟. 基于Shearlet变换的红外与可见光图像自适应融合[J]. 激光与红外, 2013, 43(4): 399-403.]
[10]  Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco: Freeman, 1982.
[11]  Liu J. Moving ship detection and tracking from infrared image for collision-avoidance of ships[J]. Opto-electronic Engineering, 2010, 37(9): 8-13. [刘俊. 面向船舶避碰预警的红外运动船舶检测与跟踪[J]. 光电工程, 2010, 37(9): 8-13.]
[12]  Gao S S, Jin W Q, Wang L X, et al. Objective quality assessment of image fusion[J]. Journal of Applied Optics, 2011,32(4): 671-677. [高绍姝, 金伟其, 王岭雪, 等. 图像融合质量客观评价方法[J]. 应用光学,2011,32(4): 671-677.]
[13]  Xydeas C S, Petrovic V.Objective pixel-level image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308-309.
[14]  da Cunha A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design and applications[J]. IEEE Transaction on Image Processing, 2006, 15(10):3089-3101.
[15]  Pajares G, Cruz J. A wavelet-based image fusion tutorial[J]. Pattern Recognition, 2004, 37(9): 1855-1872.
[16]  Lei X J. Swarm Intelligent Optimization Algorithms and Their Applications[M]. Beijing: Science Press, 2012: 46-53. [雷秀娟. 群智能优化算法及其应用[M]. 北京:科学出版社, 2012: 46-53.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133