全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向动摄像机的高速运动目标检测

DOI: 10.11834/jig.20150306

Keywords: 动摄像机,高速运动目标,运动矢量,3σ准则,目标检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的为解决动摄像机中高速运动目标检测复杂度高的问题,提出一种基于压缩视频运动矢量的高速运动目标检测新方法。方法该方法首先分析监控视频的码流格式和解码特点;然后从视频流中直接提取运动矢量;接着进行运动矢量规范化,并根据3σ准则提取场景的全局运动参数;最后通过对运动矢量统计特征的分析,实现面向动摄像机的高速运动目标快速检测。结果仿真实验表明,该方法在经典和自建数据库上目标提取效率较现有算法均有较大提高。结论本文方法充分利用了压缩视频数据中蕴含的运动信息,极大降低运动目标检测的复杂度,可以有效提取动摄像机成像画面中的高速运动目标,在经典和自建数据库上的目标提取效率较现有算法均有较大提高。

References

[1]  Wang B, Xiao W H, Zhang M J, et al. Moving object detection in dynamic scene using spatial-temporal condition information [J]. Journal of Computer-Aided Design & Computer Graphics. 2012, 24(12): 1576-1584.[王斌, 肖文华, 张茂军, 等. 采用时空条件信息的动态场景运动目标检测[J]. 计算机辅助设计与图形学学报, 2012, 24(12): 1576-1584.] [DOI: 10.3969/j.issn.1003-9775.2012.12.007]
[2]  Zhang H, An G C, Zhang F J, et al. Moving human detection algorithm with merging of multiple color space [J]. Journal of Image and Graphics, 2011, 16(10): 1944-1950.[张欢, 安国成, 张凤军, 等. 多颜色空间融合的人体检测算法研究[J]. 中国图象图形学报, 2011, 16(10): 1944-1950.] [DOI: 10.11834/jig.20111023]
[3]  Bobick A F, Wilson A D. A state-based technique for the summarization and recognition of gesture [C]//Proceedings of the fifth IEEE Conference on Computer Vision. Cambridge, NA: IEEE, 1995: 382-388.[DOI: 10.1109/ICCV.1995.466914]
[4]  Zheng J B, Li X X, Zhang Y N. Novel tacking algorithm for video surveillance [J]. Systems Engineering and Electronics, 2007, 29(11): 191-193.[郑江滨, 李秀秀, 张艳宁. 视频监控中的运动目标跟踪算法[J]. 系统工程与电子技术, 2007, 29(11): 191-193.] [DOI: 10.3321/j.issn:1001-506x.2007.11.050]
[5]  Xiao H X, Liu Y, Tan S R, et al. A noisy videos background subtraction algorithm based on dictionary learning [J]. KSII Transactions on Internet and Information Systems, 2014, 8(6): 1946-1963.[DOI: 10.3837/tiis.2014.06.008]
[6]  Zamalieva D, Yilmaz A. Background subtraction for the moving camera: a geometric approach [J]. Computer Vision and Image Understanding, 2014, 127(10): 73-85.[DOI: 10.1016/j.cviu.2014.06.007]
[7]  Horn B K, Schunck B G. Determining optical flow [J]. Artificial Intelligence, 1981, 17(2): 185-203.[DOI: 10.1117/12.965761]
[8]  Zhao G, Wang X L, Wang L R. Motion analysis and research of local navigation system for visual-impaired person based on improved LK optical flow [C]//Proceedings of the 5th International Conference on Intelligent Networks and Intelligent System. Tianjin, China: IEEE, 2012: 348-351.[DOI: 10.1109/ICINIS.2012.80]
[9]  Cai N, Chen S W, Guo W T, et al. Moving object detection using Gaussian mixture model and wavelet transform [J]. Journal of Image and Graphics, 2011, 16(9): 1716-1721.[蔡念, 陈世文, 郭文婷, 等. 融合高斯混合模型和小波变换的运动目标检测[J]. 中国图象图形学报, 2011, 16(9): 1716-1721.] [DOI: 10.11834/jig.20110923]
[10]  Chen M S, Liang G M, Sun J X, et al. Fast moving object detection method using temporal-spatial background model [J]. Journal of Image and Graphics, 2011, 16(6): 1002-1007.[陈明生, 梁光明, 孙即祥, 等. 利用时空背景模型的快速运动目标检测方法[J]. 中国图象图形学报, 2011, 16(6): 1002-1007.] [DOI: 10.11834/jig.20110616]
[11]  Guo C S, Liu D, Guo Y F, et al. An adaptive graph cut algorithm for video moving objects detection [J]. Multimedia Tools Application, 2014, 72: 2633-2652.[DOI: 10.1007/s11042-013-1566-x]
[12]  Tu L F, Peng Q, Zhong S D. A moving object detection method adapted to camera jittering [J]. Journal of Electronics & Information Technology, 2013, 35(8): 1914-1920.[屠礼芬, 彭祺, 仲思东. 一种适应相机抖动的运动目标检测方法[J]. 电子与信息学报, 2013, 35(8): 1914-1920.] [DOI: 10.3724/SP.J.1146.2012.01564]
[13]  Song Y B, Ying J, Lu L L. The research of moving object detection based on background difference compensation [C]//The 5th International Symposium on Photoelectronic Detection and Imaging: Imaging Sensors and Applications. Beijing, China: SPIE, 2013, 8908: 89081N(1-8).[DOI: 10.1117/12.2034322]
[14]  Tian Y M, Wan B, Dong W T. Object detection algorithm based on moving background in MPEG-4 video [J]. Acta Optical Sinica. 2009, 29(5): 1227-1231.[田玉敏, 万波, 董文涛. MPEG-4视频中运动背景下的目标检测算法[J]. 光学学报, 2009, 29(5): 1227-1231.] [DOI: 10.3788/AOS20092905.1227]
[15]  Barnich O, Droogenbroeck M V. ViBe: a universal background subtraction algorithm for video sequences [J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724.[DOI: 10.1109/TIP.2010.2101613]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133