全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

对表情鲁棒的面部轮廓线3维人脸识别

DOI: 10.11834/jig.20150304

Keywords: 3维人脸识别,表情变化,面部轮廓线,预形状空间,测地距离

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的表情变化是3维人脸识别面临的主要问题。为克服表情影响,提出了一种基于面部轮廓线对表情鲁棒的3维人脸识别方法。方法首先,对人脸进行预处理,包括人脸区域切割、平滑处理和姿态归一化,将所有的人脸置于姿态坐标系下;然后,从3维人脸模型的半刚性区域提取人脸多条垂直方向的轮廓线来表征人脸面部曲面;最后,利用弹性曲线匹配算法计算不同3维人脸模型间对应的轮廓线在预形状空间(preshapespace)中的测地距离,将其作为相似性度量,并且对所有轮廓线的相似度向量加权融合,得到总相似度用于分类。结果在FRGCv2.0数据库上进行识别实验,获得97.1%的Rank-1识别率。结论基于面部轮廓线的3维人脸识别方法,通过从人脸的半刚性区域提取多条面部轮廓线来表征人脸,在一定程度上削弱了表情的影响,同时还提高了人脸匹配速度。实验结果表明,该方法具有较强的识别性能,并且对表情变化具有较好的鲁棒性。

References

[1]  Li X L, Da F P. 3D face recognition based on profiles and rigid regions [J]. Journal of Image and Graphics, 2010, 15(2):266-273.[李晓莉,达飞鹏. 基于侧面轮廓线和刚性区域的3维人脸识别[J].中国图象图形学报, 2010, 15(2):266-273][DOI:10.11834/jig.20100213]
[2]  Bowyer K W, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition[J]. Computer Vision and Image Understanding,2006, 101(1):1-15.[DOI: 10.1016/j.cviu.cviu.2005.05.005]
[3]  Chang K, Bowyer K W, Flynn P. Adaptive rigid multi-region selection for handling expression variation in 3D face recognition[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego,CA,USA: IEEE Computer Society,2005: 157-164.[DOI:10.1109/CVPR.2005.567]
[4]  Mian A S, Bennamoun M, Owens R A. Region-based matching for robust 3D face recognition[C] //Proceedings of the British Machine Vision Conference. Oxford,UK: The British Machine Vision Association,2005: 1-10.[DOI:10.5244/C.19.33]
[5]  Chua C, Han F, Ho Y. 3D human face recognition using point signatures[C] //Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble,France: IEEE,2000:233-238.[DOI:10.1109/AFGR.2000.840640]
[6]  Pan G, Wang Y M, Qi Y P, et al. Finding symmetry plane of 3D face shape[C] //Proceedings of the International Conference on Pattern Recognition. Hong Kong,China: IEEE,2006:1143-1146.[DOI:10.1109/IC-PR.2006.565]
[7]  Drira H,Amor B B,Daoudi M. Pose and expression-invariant 3D face recognition using elastic radial curves[C] //Proceedings of the British Machine Vision Conference.Aberystwyth,UK: The British Machine Vision Association,2010:1-11.[DOI:10.5244/C.24.90]
[8]  Bronstein A M, Bronstein M M, Kimmel R. Three dimensional face recognition[J]. International Journal of Computer Vision, 2005, 64(1):5-30.[DOI:10.1007/s 11263-005-1085-y]
[9]  Lu X, Jainl A K. Deformation modeling for robust 3D face matching[J]. IEEE Transactions on Pattern Analy-sis and Machine Intelligence,2008, 30(8):1346-1356.[DOI:10.1109/TPAMI.2007.70784]
[10]  Wang Y, Pan G, Wu Z. 3D face recognition in the presence of expression: a guidance-based constraint deformation approach[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE Computer Society, 2007:1-7.[DOI:10.1109/CVP R.2007.383277]
[11]  Phillips P J, Flynn P J, Scruggs T, et al. Overview of the face recognition grand challenge[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego,CA,USA: IEEE Computer Society, 2006: 947-954.[DOI:10.1109/CVPR.2005.268]
[12]  Li X L, Da F P. Efficient 3D face recognition handling facial expression and hair occlusion[J]. Image and Vision Computing,2012:668-679.[DOI:10.1016/j.imav is.2012.07.011]
[13]  Joshi S, Klassen E, Srivastava A, et al. A novel representation for riemannian analysis of elastic curves in Rn[C] //Procee-dings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA:IEEE Computer Society,2007: 1-7.[DOI:10.1109/CVPR.2007.383185]
[14]  Srivastava A, Klassen E, Joshi S, et al. Shape analysis of elastic curves in Euclidean spaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011, 7(99):1415-1428.[DOI:10.1109/TPA MI.2010.184]
[15]  Frenkel M, Basri R. Curve matching using the fast marching method[C] //Proceedings of 4th International Workshop Energy Minimization Methods in Computer Vision and Pattern Recognition. Lisbon, Portugal: Springer-Verlag,2003: 35-51.[DOI:10.1007/978-3-540-45063-4_3]
[16]  Berretti S, Bimbo D, Pala P. 3D face recognition using iso-geodesic stripes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2162-2177.[DOI: 10.1109/TPAMI.2010.43]
[17]  Al-Osaimi F, Bnnamoun M, Mian A. An expression deformation approach to non-rigid 3D face recognition [J].International Journal of Computer Vision,2009,81(3): 302-316.[DOI:10.1007/s11263-008-0174-0]
[18]  Wang Y M, Liu J Z, Tang X O. Robust 3D face recognition by local shape difference boosting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(10): 1858-1870.[DOI:10.1109/TPAMI.2009.200]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133