Ohayon J, Finet G, Le Floc\'h S. et al. Biomechanics of atherosclerotic coronary plaque: site, stability and in vivo elasticity modeling[J]. Annals of Biomedical Engineering, 2014, 42(2): 269-279.[DOI: 10.1007/s10439-013-0888-1]
[2]
Cheruvu P K, Finn A V, Gardner C, et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study [J]. Journal of the American College of Cardiology, 2007, 50(10): 940-949.[DOI:10.1016/j.jacc.2007.04.086]
[3]
Dolan J M, Kolega J, Meng H. High wall shear stress and spatial gradients in vascular pathology: a review [J]. Annals of Biomedical Engineering, 2013, 41(7): 1411-1427.[DOI: 10.1007/s10439-012-0695-0]
[4]
Peiffer V, Sherwin S J, Weinberg P D. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? a systematic review[J]. Cardiovascular Research, 2013, 99(2): 242-250.[DOI: 10.1093/cvr/cvt044]
[5]
Nixon A M, Gunel M, Sumpio B E, et al. The critical role of hemodynamics in the development of cerebral vascular disease: a review[J]. Journal of Neurosurgery, 2010, 112(6): 1240-1253.[DOI: 10.3171/2009.10.JNS09759.]
[6]
Taylor C A, Steinman D A. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions[J]. Annals of Biomedical Engineering, 2010, 38(3): 1188-1203.[DOI: 10.1007/s10439-010-9901-0]
[7]
MICCAI. CFD Challenge: simulation of hemodynamics in a patient-specific aortic coarctation model [EB/OL]. (2012-10-05) [2014-09-01]. http://www.vascularmodel.org/miccai2012/.
[8]
MICCAI. The 2nd CFD challenge predicting patient-specific hemodynamics at rest and stress through an aortic coarctation [EB/OL].(2013-09-22)[2014-09-01]. http://www.vascularmodel.org/miccai2013/.
[9]
Abdoulaev G, Cadeddu S, Delussu G, et al.ViVa: the virtual vascular project[J]. IEEE Transactions on Information Techno-logy in Biomedicine, 1998, 2(4): 268-274.
[10]
Tezduyar T E, Sathe S, Schwaab M, et al. Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique [J]. Int. J. Numer. Methods Fluids, 2008, 57:601-629.[DOI: 10.1002/fld.1633]
[11]
Tezduyar T E, Schwaab M, Sathe S. Sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(45): 3524-3533.[DOI: 10.1016/j.cma.2008.05.024]
[12]
Tezduyar T E, Takizawa K, Moorman C. Multiscale sequentially-coupled arterial FSI technique[J]. Computational Mechanics, 2010, 46(1): 17-29.[DOI:10.1007/s00466-009-0423-2]
[13]
Kim E, Stamatelos S, Cebulla J. Multiscale imaging and computational modeling of blood flow in the tumor vasculature [J]. Annals of Biomedical Engineering, 2012, 40 (11): 2425-2441.
[14]
Tang B T, Foute T A, Chan F P, et al. Three-Dimensional Hemodynamics in the Human Pulmonary Arteries Under Resting and Exercise Conditions[J]. Annals of Biomedical Engineering, 2011, 39(1): 347-358.
[15]
Zhou M, Sahni O, Kim H J, et al. Cardiovascular flow simulation at extreme scale[J]. Computational Mechanics, 2010, 46(1): 71-82.[DOI: 10.1007/s00466-009-0450-z]
[16]
Grinberg L, Anor T, Cheever E, et al. Simulation of the human intracranial arterial tree[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1896): 2371-2386.
[17]
Peng H M, Yang D Q. The boundary element analysis on Y bifurcation arterial hemodynamic characteristics [J]. Chinese Journal of Medical Physics, 2012, 28(5): 2937-2940.[彭红梅, 杨德全. Y 型血管血流动力学边界元分析[J]. 中国医学物理学杂志, 2012,28(5): 2937-2940.]
[18]
Qiao A K, Liu Y J. Numerical blood flow dynamics simulation for medical applications (I): arterial blood flow[J]. Journal of Beijing University of Technology, 2008, 34 (2): 189-196. [乔爱科, 刘有军. 面向医学应用的血流动力学数值模拟 (I): 动脉中的血流[J]. 北京工业大学学报, 2008, 34 (2): 189-196.]
[19]
Grinberg L, Fedosov D A, Karniadakis G E. Parallel multiscale simulations of a brain aneurysm [J]. Journal of Computational Physics, 2013, 244 (3): 131-147.[DOI: 10.1016/j.jcp.2012.08.023]
[20]
Grinberg L, Karniadakis G E. A new domain decomposition method with overlapping patches for ultrascale simulations: Application to biological flows [J]. Journal of Computational Phy-sics, 2010, 229(15): 5541-5563.[DOI: 10.1016/j.jcp.2010.04.014]
[21]
Takami Y, Takuji I, Ken-ichi T, et al. Computational blood flow analysis―new trends and methods[J]. Journal of Biomechanical Science and Engineering, 2006, 1(1): 29-50.
[22]
Hariprasad D S, Secomb T W. Motion of red blood cells near micro-vessel walls: effects of a porous wall layer[J]. Journal of Fluid Mechanics, 2012, 705(4): 195-212.
[23]
Michael K, Gee D. Multiscale Modeling of Particle Interactions: Applications in Biology and Nanotechnology[M]. New Jersey: John Wiley & Sons, 2010: 225-283.
[24]
Jiang X M, Tong W, Zhong W X. Simulation study of hemodynamics of red blood cells in stenotic micro-vessels[J]. Advanced Materials Research, 2013, 647(3): 321-324.[DOI:10.4028/www.scientific.net/AMR.647.321]
[25]
Ho H, Suresh V, Kang W, et al. Multiscale modeling of intracranial aneurysms: cell signaling, hemodynamics, and remo-deling [J]. IEEE Transactions on Biomedical Engineering, 2011, 58(10):2974-2977.[DOI: 10.1109/TBME.2011.2160638]
[26]
Nicolas M. Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics[J]. Procedia Computer Science, 2013, 18(3): 2565-2574.
[27]
Xiao N, Humphrey J D, Figueroa C A. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network [J]. Journal of Computational Physics, 2013, 244(6): 22-40.[DOI: 10.1016/j.jcp.2012.09.016]
[28]
Vavourakis V, Papaharilaou Y, Ekaterinaris J A. Coupled fluid-structure interaction hemodynamics in a zero-pressure state corrected arterial geometry [J]. Journal of Biomechanics, 2011, 44(13): 2453-2460.[DOI: 10.1016/j.jbiomech.2011.06.024]
[29]
Torii R, Oshima M, Kobayashi T, et al. Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(45): 3613-3621.[DOI:10.1016/j.cma.2008.08.020]
[30]
Kim H J, Figueroa C A, Hughes T J R, et al. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(45): 3551-3566.[DOI: 10.1016/j.cma.2009.02.012]
[31]
Takizawa K, Moorman C, Wright S, et al. Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions[J]. Computational Mechanics, 2010, 46(1): 31-41.[DOI: 10.1007/s00466-009-0425-0]
[32]
Tezduyar T E, Sathe S. Modelling of fluid-structure interactions with the space-time finite elements: solution techniques [J]. International Journal for Numerical Methods in Fluids, 2007, 54(6-8): 855-900.[DOI: 10.1002/fld.1430]
[33]
更多...
[34]
Bazilevs Y, Hsu M C, Zhang Y, et al. A fully-coupled fluid-structure interaction simulation of cerebral aneurysms [J]. Computational Mechanics, 2010, 46(1): 3-16.[DOI:10.1007/s00466-009-0421-4]
[35]
Liu A H, Li C H, Yang X J, et al. Hemodynamic numerical simulation of recurrent posterior communicating artery aneurysms after embolization[J].Chinese Journal of Cerebrovascular Diseases,2013, 10(2):3-5.[刘爱华, 李传辉, 杨新健, 等. 颅内后交通动脉动脉瘤栓塞后复发的血流动力学数值模拟分析[J]. 中国脑血管病杂志, 2013, 10(2): 3-5.][DOI:10.3969/j.issn.1672-5921.2013.02.002]
[36]
Dai J H, Ding G H, Gong J Q, et al. Two-dimensional numerical simulation of hemodynamics of intracranial aneurysm[J]. Journal of Fudan University: Natural Science, 2004, 43(3): 392-396.[戴建华,丁光宏,龚剑秋, 等.颅内动脉瘤的血液动力学二维数值模拟[J].复旦学报: 自然科学版, 2004,43(3): 392-396.]
[37]
Gu X Z, Cheng J, Li L J, et al. Numerical simulation and experimental test of hemodynamics in vessel-stent coupling systems[J]. Journal of Southeast University: Natural Science, 2013,42(6): 1089-1093.[顾兴中, 程洁, 李俐军,等.血管支架耦合系统血流动力学数值模拟与实验研究[J]. 东南大学学报: 自然科学版, 2013,42(6): 1089-1093.]
[38]
Ren G P, Jiang P, Cao X Q, et al. Hemodynamic analysis of preoperative and postoperative carotid aneurysm by using CT 3-D numerical simulation[J]. Journal of Interventional Radiology, 2013,22(10): 825-829. [任国荣, 姜平, 曹枭强,等.基于 CT 的三维颈内动脉瘤手术前后的血流动力学分析[J]. 介入放射学杂志, 2013,22(10): 825-829.]
[39]
Mei L Q, Zhao K. Influence of arterial stenosis to blood flow in bifurcation vessel[J]. Chinese Journal of Applied Mechanics, 2013,(3): 21-26. [梅立泉,赵柯.分叉血管中动脉狭窄对血液流动的影响[J].应用力学学报,2013,(3): 21-26.]
[40]
Fedosov D A, Caswell B, Karniadakis G E. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics [J]. Journal of Biophysical, 2010, 98(10): 2215-2225.[DOI: 10.1016/j.bpj.2010.02.002]
[41]
Selimovic A, Ventikos Y, Watton P N. Modelling the evolution of cerebral aneurysms: biomechanics, mechanobiology and multiscale modelling[J]. Procedia IUTAM, 2014, 10(3): 396-409.
[42]
Randles, A P, B?cher M, Pfister H, et al. A lattice Boltzmann simulation of hemodynamics in a patient-specific aortic coarctation model. Statistical[J]. Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges Lecture Notes in Computer Science, 2013, 7746(5): 17-25.[DOI: 10.1016/j.piutam.2014.01.034]
[43]
Bernaschi M, Melchionna S, Succi S, et al. MUPHY: a parallel Multi-physics/scale code for high performance bio-fluidic simulations [J]. Computer Physics Communications, 2009, 180(9):1495-1502.[DOI: 10.1016/j.cpc.2009.04.001]
[44]
Grinberg L, Morozov V, Fedosov D, et al. A new computational paradigm in multiscale simulations: application to brain blood flow[C] //Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC). Seatle, US: IEEE, 2011: 1-12.
[45]
Sengupta D, Kahn A M, Burns J C, et al. Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease[J]. Biomechanics and Modeling in Mechanobiology, 2012, 11(6): 915-932.
[46]
Hester R L, Brown A J, Husband L, et al. HumMod: a modeling environment for the simulation of integrative human physiology[J]. Frontiers in Physiology, 2011, 2: 1-12.[DOI:10.3389/fphys.2011.00012]
[47]
Klaseboer E, Turangan C, Fong S W, et al. Simulations of pressure pulse-bubble interaction using boundary element method[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(33): 4287-4302.[DOI: 10.1016/j.cma.2005.08.014]
[48]
Karniadakis G, Sherwin S. Spectral/hp Element Methods for Computational Fluid Dynamics [M]. 2nd ed. Oxford: Oxford University Press, 2013: 234-293.
[49]
Bazilevs Y, Calo V M, Hughes T J R, et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations [J]. Computational Mechanics, 2008, 43(1): 3-37.[DOI: 10.1007/s00466-008-0315-x]
[50]
Figueroa C A, Vignon-Clementel I E, Jansen K E, et al. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41): 5685-5706.[DOI:10.1016/j.cma.2005.11.011]
[51]
Peters A, Melchionna S, Kaxiras E, et al. Multiscale simulation of cardiovascular flows on the IBM Bluegene/P: full heart-circulation system at red-blood cell resolution[C] //Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis. New Orleans, US: IEEE Computer Society, 2010: 1-10.[DOI:10.1109/SC. 2010.33]
[52]
Grinberg L, Fedosov D A, Karniadakis G E. Parallel multiscale simulations of a brain aneurysm [J]. Journal of computational physics, 2013, 244: 131-147.[DOI: 10.1016/j.jcp.2012.08.023]
[53]
Zhang Y, Bajaj C, Sohn B S. 3D finite element meshing from imaging data[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(48): 5083-5106.[DOI:10.1016/j.cma.2004.11.026]
[54]
Ovcharenko A, Leksandr C K, Sahni O, et al. Parallel adaptive boundary layer meshing for CFD analysis[C] //Proceedings of the 21st International Meshing Roundtable. Berlin Heidelberg: Springer, 2013: 437-455.[DOI:10.1007/978-3-642-33573-0_26]
[55]
Sahni O, Müller J, Jansen K E, et al. Efficient anisotropic adaptive discretization of the cardiovascular system[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41): 5634-5655.[DOI: 10.1016/j.cma.2005.10.018]
[56]
Zhang Y, Wang W, Liang X, et al. High-fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms[J]. Computer Modeling in Engineering and Sciences, 2009, 42(2): 131-138.[DOI: 10.3970/cmes.2009.042.131]
[57]
Hetmaniuk U, Knupp P. A mesh optimization algorithm to decrease the maximum interpolation error of linear triangular finite elements[J]. Engineering with Computers, 2010, 27(1): 3-15.[DOI: 10.1007/s00366-010-0176-8]
[58]
Kamenski L. A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the finite element method[C]//Proceedings of the 19th International Meshing Roundtable. Berlin Heidelberg: Springer, 2010: 297-314.[DOI:10.1007/s00366-011-0240-z]
[59]
Janela J, Moura A, Sequeira A. A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries [J]. Journal of Computational and Applied Mathematics, 2010, 234(9): 2783-2791.[DOI: 10.1016/j.cam. 2010.01.032]
[60]
Erzincanli B, Sahin M. An arbitrary Lagrangian-Eulerian formulation for solving moving boundary problems with large displacements and rotations [J]. Journal of Computational Physics, 2013, 255: 660-679.[DOI: 10.1016/j.jcp.2013.08.038]
[61]
Takizawa K, Tezduyar T E. Space-time computation techniques with continuous representation in time (ST-C) [J]. Computational Mechanics, 2014, 53(1): 91-99.[DOI: 10.1007/s00466-013-0895-y]
[62]
Burman E, Smith G. Analysis of the space semi-discretized SUPG method for transient convection-diffusion equations[J]. Mathematical Models and Methods in Applied Sciences, 2011, 21(10): 2049-2068.[DOI: 10.1142/S0218202511005659]
[63]
Burman E, Fern?ndez M A. Analysis of the PSPG method for the transient Stokes\' problem[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(41): 2882-2890.[DOI: 10.1016/j.cma.2011.05.001]
[64]
Xiong G, Figueroa C A, Xiao N, et al. Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties [J]. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27(7): 1000-1016.
[65]
Barsoum R S. On the use of isoparametric finite elements in linear fracture mechanics[J]. International Journal for Numerical Methods in Engineering, 1976, 10(1): 25-37.[DOI: 10.1002/nme.1620100103]
[66]
Bazilevs Y, Gohean J R, Hughes T J R, et al. Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(45): 3534-3550.[DOI: 10.1016/j.cma.2009.04.015]
[67]
van de Vosse F N, Stergiopulos N. Pulse wave propagation in the arterial tree[J]. Annual Review of Fluid Mechanics, 2011, 43: 467-499.[DOI: 10.1146/annurev-fluid-122109-160730]
[68]
Grinberg L, Karniadakis G E. Outflow boundary conditions for arterial networks with multiple outlets[J]. Annals of Biomedical Engineering, 2008, 36(9): 1496-1514.[DOI: 10.1007/s10439-008-9527-7]
[69]
Vignon-Clementel I E, Alberto F C, Jansen K E, et al. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(29): 3776-3796.[DOI:10.1016/j.cma.2005.04.014]
[70]
Giancarlo P, Chiara C, Daria C. Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances results in a critical issue for a virtual surgical planning[J]. Interface Focus, 2011, 10 (3): 297-307.[DOI: 10.1098/rsfs.2010.0021]
[71]
Pivkin I V, Karniadakis G E. Accurate coarse-grained modeling of red blood cells [J]. Physical Review Letters, 2008, 101(11):118-105.[DOI:10.1103/PhysRevLett.101.118105]
[72]
Pivkin I V, Caswell B, Karniadakis G E, et al. Dissipative particle dynamics [J]. Reviews in Computational Chemistry, 2010, 27(1):1-12.