全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多尺度活动网格在云场景仿真中的应用

DOI: 10.11834/jig.20150206

Keywords: 实时绘制,多尺度活动网格,云场景仿真,方程简化,迎风差分

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的已有的基于网格的流体仿真方法存在效率低的问题,不利于物体参与交互,提出一种多尺度活动网格方法用于云场景的仿真以及云与物体的交互仿真.方法自动选择全局与局部网格的分辨率,对参与交互的物体建立OBB(orientedboundingbox)层次包围盒以提高仿真效率.针对云的粘性系数非常小的特点,简化了它们的运动方程与热动力学方程.基于提出的方法对偏微分方程进行了离散化,在方程离散化处理过程中,采用迎风差分方法以保证仿真过程的稳定性.实现过程中,运用GPU的计算性能提高仿真速度.结果通过云场景的仿真进行了实验,结果表明,可以较为真实地绘制不同时间段的云场景,能满足大规模云场景的仿真需求,实现了云场景以及云与刚性物体交互的实时绘制.结论相比已有基于网格的方法,本文方法可以容易地在GPU上实现,且提高了仿真效率与绘制图像的真实感.

References

[1]  Miyazaki R, Dobashi Y, Nishita T. Simulation of cumuliform clouds based on computational fluid dynamics[C]//Proceedings of Eurographics 2002 Short Presentation. Aire-la-Ville, Switzerland: The Eurographics Association, 2002: 405-410.
[2]  Selle A, Rasmussen N, Fedkiw R. A vortex particle method for smoke, water and explosions[J]. ACM Transactions on Graph., 2005, 24(3): 910-914.
[3]  Dobashi Y, Matsuda Y, Yamamoto T, et al. A fast simulation method using overlapping grids for interactions between smoke and rigid objects[J]. Computer Graphics Forum, 2008, 27(2): 477-486.
[4]  Lentine M, Zheng W, Fedkiw R. A novel algorithm for incompressible flow using only a coarse grid projection[J]. ACM Transactions on Graph., 2010, 29(4): 114(1-9).
[5]  Lentine M, Cong M, Patkar S, et al. Simulating free surface flow with very large time steps[C]//ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville, Switzerland: The Eurographics Association, 2012:107-116.
[6]  English R E, Qiu L, Yu Y, et al. An adaptive discretization of incompressible flow using a multitude of moving cartesian grids[J]. Journal of Computational Physics, 2013, 254(12): 107-154.
[7]  Qiu H, Yang K, Chen Y, et al. Survey on realistic simulation of cloud[J]. Computer Science, 2011, 38(6): 14-19. [邱航, 杨珂, 陈瑜, 等. 云的真实感模拟技术综述[J]. 计算机科学, 2011, 38(6): 14-19.]
[8]  Miyazaki R, Yoshida S, Dobashi Y, et al. A method for modeling clouds based on atmospheric fluid dynamics[C]//Proceedings of Pacific Graphics. Washington DC: IEEE Computer Society, 2001: 363-372.
[9]  Harris M J. Real-time cloud simulation and rendering[D]. Chapel Hill: University of North Carolina, 2003.
[10]  Ren W, Liang X H, Ma S, et al. A real-time simulation method for large-scale 3D clouds[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(4): 662-669. [任威, 梁晓辉, 马上, 等. 大规模三维云实时模拟方法[J]. 计算机辅助设计与图形学学报, 2010, 22(4): 662-669.]
[11]  Stam J. Stable fluids[C]//Proceedings of SIGGRAPH\'99. New York: Association for Computing Machinery, 1999: 121-128.
[12]  Fedkiw R, Stam J, Jesen H W. Visual simulation of smoke[C]//Proceedings of SIGGRPH\'01. New York: Association for Computing Machinery, 2001: 15-22.
[13]  Carlson M, Mucha P J, Turk G. Rigid fluid: animating the interplay between rigid bodies and fluid[J]. ACM Transactions on Graphics, 2004, 23(3): 377-384.
[14]  Guendelman E, Selle A, Losasso F, et al. Coupling water and smoke to thin deformable and rigid shells[J]. ACM Transactions on Graphics, 2005, 24(3): 973-981.
[15]  Griebel M, Dornseifer T, Neunhoeffer T. Numerical simulation in fluid dynamics: a practical introduction[M]. Philadelphia: SIAM Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics, 1997.
[16]  Crane K, Llamas I, Tariq S. Real-time simulation and rendering of 3D fluids[M]. GPU Gems 3. New York: Addison Wesley Professional, 2007: 633-675.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133