全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合K-D树和Shell的快速动态等值面光线跟踪法

DOI: 10.11834/jig.20150205

Keywords: 体数据可视化,等值面,光线跟踪,K-D树,Shell数据结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的K-D树和Shell常被用于加速等值面光线跟踪法.如果Isovalue保持不变时,Shell方法效率更高,否则Shell方法需要重构Shell,而K-D树方法速度更快.提出一种结合K-D树和Shell的动态等值面光线跟踪方法,其关键是如何实现两者的平稳切换.方法首先改进基于K-D树的等值面光线跟踪算法,使得该方法在绘制过程中渐进地构建Shell数据结构.在Isovalue发生变化后,首先使用改进的基于K-D树的等值面光线跟踪算法进行绘制,并在绘制过程中渐进地构建新的Shell数据结构,从而平滑地过渡到绘制效率更高的基于Shell的等值面光线跟踪算法.结果实验中,在Isovalue动态变化时本文方法的效率接近K-D树方法;但用户在进行缩放、旋转等操作时,本文方法能达到Shell方法的速度.实验结果表明本文方法结合了两者的优点.结论提出了一种快速Isovalue光线跟踪算法,综合运用K-D树和Shell两种数据结构,在Isovalue保持不变和动态变化两者场合都实现了较高的绘制速度.

References

[1]  Lorensen W E, Cline H E. Marching cubes: a high resolution 3D surface construction algorithm [C]//Proceedings of ACM Siggraph Computer Graphics. New York: ACM, 1987, 21(4): 163-169.
[2]  Akio D, Koide A. An efficient method of triangulating equi-valued surfaces by using tetrahedral cells[J]. IEEE Transactions on Information and Systems, 1991, 74(1): 214-224.
[3]  Parker S, Shirley P, Livnat Y, et al. Interactive ray tracing for isosurface rendering[C]//Proceedings of the Conference on Visualization\'98. Los Alamitos, CA, USA:IEEE, 1998: 233-238.
[4]  Parker S, Parker M, Livnat Y, et al. Interactive ray tracing for volume visualization[C]//ACM SIGGRAPH 2005 Courses. New York:ACM, 2005: #15.
[5]  Lin C C, Ching Y T. An efficient volume-rendering algorithm with an analytic approach[J]. The Visual Computer, 1996, 12(10): 515-526.
[6]  Marschner S R, Lobb R J. An evaluation of reconstruction filters for volume rendering[C]//Proceedings of the Conference on Visualization\'94. Los Alamitos, CA, USA: IEEE Computer Society Press, 1994: 100-107.
[7]  ?rámek M. Fast surface rendering from raster data by voxel traversal using Chessboard distance[C]//Proceedings of the Conference on Visualization\'94. Los Alamitos, CA, USA: IEEE, 1994: 188-195.
[8]  Wald I, Friedrich H, Marmitt G, et al. Faster isosurface ray tracing using implicit kd-trees[J]. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(5): 562-572.
[9]  Foley T, Sugerman J. KD-tree acceleration structures for a GPU raytracer[C]//Proceedings of the ACM Siggraph/Eurographics Conference on Graphics Hardware.New York: ACM, 2005: 15-22.
[10]  Hughes D M, Lim I S. Kd-jump:a path-preserving stackless traversal for faster isosurface raytracing on gpus[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1555-1562.
[11]  Xiao K, Chen D Z, Hu X S, et al. Shell:A Spatial Decomposition Data Structure for 3D Curve Traversal on Many-Core Architectures[M]. Algorithms-ESA 2013. Berlin Heidelberg: Springer 2013: 815-826.
[12]  MacDonald J D, Booth K S. Heuristics for ray tracing using space subdivision[J]. The Visual Computer, 1990, 6(3): 153-166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133