全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

拟正态分布扩散的图像平滑

DOI: 10.11834/jig.20150202

Keywords: 拟正态分布,通量函数,扩散系数,图像平滑

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的在传统的去噪模型中,若仅考虑去噪与边缘保护这两个方面,会导致纹理等细节信息丢失,为解决传统模型这方面的缺陷,提出了一种基于拟正态分布的图像去噪模型.方法提出的模型是以经典的各向异性扩散模型为基础,首先分析了扩散系数在扩散过程中的作用,引入通量函数,做归一化处理,建立新的扩散系数,构造新的扩散模型;然后考虑新模型在去噪过程中,既要有效去噪,又要保护图像的边缘、纹理等细节信息,将扩散系数构造成拟正态分布函数.结果实验结果表明,在同一实验条件下,新模型的峰值信噪比与经典模型相比提高了28dB左右,均方差大幅度降低,图像的边缘更加清晰,对比度得到显著增强.结论提出的新模型能够较稳定地控制扩散过程,使图像在去噪和保边缘、纹理等细节信息方面都达到令人满意的效果,峰值信噪比有了大幅提高,其去噪性能较经典模型更具优越性.

References

[1]  Gonzalez R C. Digital Image Processing[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2011:197-213.[冈萨雷斯,伍兹. 数字图像处理[M]. 3版,北京:电子工业出版社, 2011:197-213.]
[2]  Li P, Zou Y, Yao Z A. Fourth-order anisotropic diffusion equation for image zooming[J]. Journal of Image and Graphics, 2013, 18(10):1261-1269. [李鹏,邹杨,姚正安. 四阶各项异性扩散方程在图像放大中的应用[J]. 中国图象图形学报, 2013,18(10):1261-1269.][DOI:10.11834/jig.20131006]
[3]  Liu P, Fang H, Li G Q. Remote-sensing image de-noising using partial differential equations and auxiliary images as priors[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 358-361.
[4]  Sofou, Evangelopoulos, Maragos. Soil image segmentation and texture analysis: a computer vision approach[J].IEEE Geoscience and Remote Sensing Letters,2005, 2(4): 394-398.
[5]  Ham B, Min D, Sohn K. Revisiting the relationship between adaptive smoothing and anisotropic diffusion with modified filters[J].IEEE Transactions on Image Processing, 2013, 22(3):1096-1101.
[6]  Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
[7]  Niang O, Thioune A, Gueirea M C, et al. Partial differential equation-based approach for empirical mode decomposition: application on image analysis[J]. IEEE Transactions on Image Processing, 2012, 21(9): 3991-3999.
[8]  Kim H, Cha Y, Kim S. Curvature interpolation method for image zooming [J]. IEEE Transactions on Image Processing, 2011, 20(7): 1895-1903.
[9]  Gilboa G, Sochen N, Zeevi Y Y. Forward and backward diffusion processes for adaptive image enhancement and de-noising[J]. IEEE Transactions on Image Processing,2002,11(7):689-703.
[10]  Li J C, Ma Z H, Peng Y X, et al. Speckle reduction by image anisotropic diffusion[J]. Acta Phys. Sin, 2013, 62(9): 099501-099509. [李金才, 马自辉, 彭宇行等. 基于图像熵的各向异性相干斑噪声抑制[J].物理学报, 2013, 62(9): 099501-099509.]
[11]  Erturk M A, Bottomley P A, EI-Sharkawy A M. Denoising MRI using spectral subtraction [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(6): 1156-1561.
[12]  Strauss D J, Teuber T, Steidl G, et al. Corona-Strauss. Exploiting the self-similarity in ERP images by nonlocal means for single-trial de-noising [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(4): 576-582.
[13]  Ye J T, Xu G L. Geometric flow approach for region-based segmentation[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4735-4744.
[14]  Weickert J, Romeny T H, Viergever M A. Efficient and reliable schemes for nonlinear diffusion filtering [J]. IEEE Transactions on Image Processing, 1998, 7(3): 398-410.
[15]  Zhang Y H, Yang D, Wang L H. The improvement of ROF de-noising model based on AOS and fourth-order PDE[J]. Procedia Engineering, 2011, 15: 2778-2782.
[16]  Paul B, Zhang L, Wu L L. Caany edge detection enhancement by scale multiplication[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(9): 1485-1490.
[17]  Catte F, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIMA J. Numerical Analysis, 1992, 29(1): 182-193.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133