全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

主动学习的多标签图像在线分类

DOI: 10.11834/jig.20150210

Keywords: 多标签分类,主动学习,在线学习,min-max理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的在多标签有监督学习框架中,构建具有较强泛化性能的分类器需要大量已标注训练样本,而实际应用中已标注样本少且获取代价十分昂贵.针对多标签图像分类中已标注样本数量不足和分类器再学习效率低的问题,提出一种结合主动学习的多标签图像在线分类算法.方法基于min-max理论,采用查询最具代表性和最具信息量的样本挑选策略主动地选择待标注样本,且基于KKT(Karush-Kuhn-Tucker)条件在线地更新多标签图像分类器.结果在4个公开的数据集上,采用4种多标签分类评价指标对本文算法进行评估.实验结果表明,本文采用的样本挑选方法比随机挑选样本方法和基于间隔的采样方法均占据明显优势;当分类器达到相同或相近的分类准确度时,利用本文的样本挑选策略选择的待标注样本数目要明显少于采用随机挑选样本方法和基于间隔的采样方法所需查询的样本数.结论本文算法一方面可以减少获取已标注样本所需的人工标注代价;另一方面也避免了传统的分类器重新训练时利用所有数据所产生的学习效率低下的问题,达到了当新数据到来时可实时更新分类器的目的.

References

[1]  Schapire R E, Singer Y. BoosTexter: a boosting-based system for text categorization [J]. Machine Learning, 2000, 39(2-3): 135-168. [DOI: 10.1023/A:1007649029923]
[2]  Hoi S C H, Jin R, Zhu J K, et al. Semi-supervised svm batch mode active learning for image retrieval [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Patt-ern Recognition. Anchorage, AK: IEEE, 2008: 1-7. [DOI:10.1109/CVPR.2008.4587350]
[3]  Huang S J, Jin R, Zhou Z H. Active learning by querying infor-mative and representative examples [C]//Proceedings of the 24th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: NIPS, 2010: 892-900. [DOI:10.1109/TPAMI.2014.2307881]
[4]  Balcan M F, Broder A Z, Zhang T. Margin based active learning [C]//Proceedings of the 20th Annual Conference on Learning Theory. San Diego, CA, USA: Springer Berlin Heidelberg, 2007: 35-50.
[5]  Freund Y, Seung H S, Shamir E, et al. Selective sampling using the query by committee algorithm [J]. Journal of Machine Learning, 1997, 28(2-3): 133-168. [DOI: 10.1023/A:1007330508534]
[6]  Yu K, Bi J, Tresp V. Active learning via transductive experimental design [C]//Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, USA: ACM, 2006: 1081-1088. [DOI: 10.1145/1143844.1143980]
[7]  Dasgupta S, Hsu D. Hierachical sampling for active learning [C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008: 208-215.
[8]  Donmwz P, Carbonell J G, Bennett P N. Dual strategy active learning [C]//Proceedings of the 18th European Conference on Machine Learning. Berlin: Springer, 2007: 116-127. [DOI: 10.1007/978-3-540-74958-5_14]
[9]  Nguyen H T, Smeulder A W. Active learning using pre-clustering [C]//Proceedings of the 21st International Conference on Machine Learning. New York, USA: ACM, 2004: 623-630.
[10]  Li X C, Wang L, Sung E. Multi-label SVM active learning for image Classification [C]//Proceedings of IEEE International Conference on Image Processing. Singapore: University of Nanyang Technology, 2004: 2207-2210. [DOI: 10.1109/ICIP. 2004. 1421535]
[11]  Qi G J.Multi-label classification with its application into multimedia analysis [D]. Hefei: University of Science and Technology of China, 2009. [齐国君. 多类别模式分类技术及其在多媒体分析上的应用 [D]. 合肥: 中国科学技术大学, 2009.]
[12]  Qi G J, Hua X S, Rui Y, et al. Two-dimensional multi-label acti-ve learning with an efficient online adaption model for image cla-ssification [J]. IEEE Transactions on Pattern analysis and Machine Intelligence, 2009, 31(10): 1880-1897. [DOI:10.1109/TPAMI.2008.218]
[13]  Jiang H, Qi Y S. Active learning for multi-label classification based on sphere structured support vector machine [J]. Journal of Computer Applications, 2012, 32(5): 1359-1366. [蒋华, 戚玉顺. 基于球结构支持向量机的多标签分类的主动学习[J]. 计算机应用, 2012, 32(5): 1359-1366.]
[14]  Zhang X Y, Cheng J, Xu C S, et al. Multi-view multi-label active learning for image classification [C]//Proceedings of IEEE International Conference on Multimedia and Expo. New York: IEEE, 2009: 258-261. [DOI: 10.1109/ICME.2009.5202484]
[15]  Brinker K. On Active Learning in Multi-label Classification [M]. Berlin Heidelberg: Springer, 2006: 206-213. [DOI: 10.1007/3-540-31314-1_24]
[16]  Liu D Y, Qiu W J. Active learning method for multi-label classification based on average expectation margin [J]. Journal of Computer Engineering, 2011, 37(15): 168-170. [刘端阳, 邱卫杰. 基于平均期望间隔的多标签分类主动学习方法[J]. 计算机工程, 2011, 37(15): 168-170.]
[17]  Xu Y. Multi-label SVM active learning based on one side of margin [J]. Journal of Computer Knowledge and Technology, 2012, 8(35): 8349-8352. [许钰. 基于偏侧分类间隔的多标签SVM主动学习[J]. 电脑知识与应用, 2012, 8(35): 8349-8352.]
[18]  Belkin M, Niyogi P, Sindwani V. Manifold regularization: a geometric framework for learning from labeled and by batch mode active learning [J]. Journal of Machine Learning Research, 2006, 1(7): 633-642. [DOI: 10.1145/1135777.1135870]
[19]  Elisseeff A, Weston J. A kernel method for multi-labeled classification [C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002:681-687. [DOI:10.1109/2013.062613.00160]
[20]  Sun F M, Tang J H, Li H J, et al. Multi-label image categorization with sparse factor representation [J]. IEEE Transactions on Image Processing, 2014, 23(3):1028-1037. [DOI: 10.1109/TIP.2014.2298978]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133