Schapire R E, Singer Y. BoosTexter: a boosting-based system for text categorization [J]. Machine Learning, 2000, 39(2-3): 135-168. [DOI: 10.1023/A:1007649029923]
[2]
Hoi S C H, Jin R, Zhu J K, et al. Semi-supervised svm batch mode active learning for image retrieval [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Patt-ern Recognition. Anchorage, AK: IEEE, 2008: 1-7. [DOI:10.1109/CVPR.2008.4587350]
[3]
Huang S J, Jin R, Zhou Z H. Active learning by querying infor-mative and representative examples [C]//Proceedings of the 24th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: NIPS, 2010: 892-900. [DOI:10.1109/TPAMI.2014.2307881]
[4]
Balcan M F, Broder A Z, Zhang T. Margin based active learning [C]//Proceedings of the 20th Annual Conference on Learning Theory. San Diego, CA, USA: Springer Berlin Heidelberg, 2007: 35-50.
[5]
Freund Y, Seung H S, Shamir E, et al. Selective sampling using the query by committee algorithm [J]. Journal of Machine Learning, 1997, 28(2-3): 133-168. [DOI: 10.1023/A:1007330508534]
[6]
Yu K, Bi J, Tresp V. Active learning via transductive experimental design [C]//Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, USA: ACM, 2006: 1081-1088. [DOI: 10.1145/1143844.1143980]
[7]
Dasgupta S, Hsu D. Hierachical sampling for active learning [C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008: 208-215.
[8]
Donmwz P, Carbonell J G, Bennett P N. Dual strategy active learning [C]//Proceedings of the 18th European Conference on Machine Learning. Berlin: Springer, 2007: 116-127. [DOI: 10.1007/978-3-540-74958-5_14]
[9]
Nguyen H T, Smeulder A W. Active learning using pre-clustering [C]//Proceedings of the 21st International Conference on Machine Learning. New York, USA: ACM, 2004: 623-630.
[10]
Li X C, Wang L, Sung E. Multi-label SVM active learning for image Classification [C]//Proceedings of IEEE International Conference on Image Processing. Singapore: University of Nanyang Technology, 2004: 2207-2210. [DOI: 10.1109/ICIP. 2004. 1421535]
[11]
Qi G J.Multi-label classification with its application into multimedia analysis [D]. Hefei: University of Science and Technology of China, 2009. [齐国君. 多类别模式分类技术及其在多媒体分析上的应用 [D]. 合肥: 中国科学技术大学, 2009.]
[12]
Qi G J, Hua X S, Rui Y, et al. Two-dimensional multi-label acti-ve learning with an efficient online adaption model for image cla-ssification [J]. IEEE Transactions on Pattern analysis and Machine Intelligence, 2009, 31(10): 1880-1897. [DOI:10.1109/TPAMI.2008.218]
[13]
Jiang H, Qi Y S. Active learning for multi-label classification based on sphere structured support vector machine [J]. Journal of Computer Applications, 2012, 32(5): 1359-1366. [蒋华, 戚玉顺. 基于球结构支持向量机的多标签分类的主动学习[J]. 计算机应用, 2012, 32(5): 1359-1366.]
[14]
Zhang X Y, Cheng J, Xu C S, et al. Multi-view multi-label active learning for image classification [C]//Proceedings of IEEE International Conference on Multimedia and Expo. New York: IEEE, 2009: 258-261. [DOI: 10.1109/ICME.2009.5202484]
[15]
Brinker K. On Active Learning in Multi-label Classification [M]. Berlin Heidelberg: Springer, 2006: 206-213. [DOI: 10.1007/3-540-31314-1_24]
[16]
Liu D Y, Qiu W J. Active learning method for multi-label classification based on average expectation margin [J]. Journal of Computer Engineering, 2011, 37(15): 168-170. [刘端阳, 邱卫杰. 基于平均期望间隔的多标签分类主动学习方法[J]. 计算机工程, 2011, 37(15): 168-170.]
[17]
Xu Y. Multi-label SVM active learning based on one side of margin [J]. Journal of Computer Knowledge and Technology, 2012, 8(35): 8349-8352. [许钰. 基于偏侧分类间隔的多标签SVM主动学习[J]. 电脑知识与应用, 2012, 8(35): 8349-8352.]
[18]
Belkin M, Niyogi P, Sindwani V. Manifold regularization: a geometric framework for learning from labeled and by batch mode active learning [J]. Journal of Machine Learning Research, 2006, 1(7): 633-642. [DOI: 10.1145/1135777.1135870]
[19]
Elisseeff A, Weston J. A kernel method for multi-labeled classification [C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002:681-687. [DOI:10.1109/2013.062613.00160]
[20]
Sun F M, Tang J H, Li H J, et al. Multi-label image categorization with sparse factor representation [J]. IEEE Transactions on Image Processing, 2014, 23(3):1028-1037. [DOI: 10.1109/TIP.2014.2298978]