全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

针对重复模式图像的成对特征点匹配

DOI: 10.11834/jig.20150112

Keywords: 图像匹配,重复模式,成对特征点,局部特征,全局特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的含有重复模式的图像会对局部特征描述符产生歧义,因此基于局部特征的匹配算法在此类图像的匹配过程中极易产生误匹配。同时,通过研究现有的引入全局特征描述符的匹配算法,发现全局特征同样依赖于计算局部信息所得到的特征点主方向,所以此类方法在含有重复模式的图像中也不容易得到令人满意的匹配效果。为了解决这一问题,提出一种基于成对特征点的图像匹配算法。方法该方法利用成对特征点的方向向量作为特征点对的主方向,为特征描述提供了正确的方向信息,同时引入DAISY描述符与改进后的全局上下文(globalcontext)特征描述符,提高了匹配能力。结果分别在模拟图像与实际图像上面进行了对比匹配实验,本文算法平均的匹配正确率能达到88%以上,比其他经典的匹配算法提高了26%以上。结论实验结果表明,本文算法克服了现有算法在特征描述与主方向分配上的缺陷,进一步提升了匹配正确率,能够有效地解决重复模式图像的匹配问题。

References

[1]  Alcantarilla P F, Bartoli A, Davison A J. KAZE features[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2012(6): 214-227. [DOI: 10.1007/978-3-642-33783-3_16]
[2]  Fan B, Wu F, Hu Z. Rotationally invariant descriptors using intensity order pooling[J]. IEEE Transactions on, Pattern Analysis and Machine Intelligence, 2012, 34(10): 2031-2045. [DOI: 10.1109/TPAMI.2011.277]
[3]  Kim B, Yoo H, Sohn K. Exact order based feature descriptor for illumination robust image matching[J]. Pattern Recognition, 2013, 46(12): 3268-3278. [DOI: 10.1016/j.patcog.2013. 04.015 ]
[4]  Leordeanu M, Hebert M. A spectral technique for correspondence problems using pairwise constraints[C]//Proceedings of IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2005(2): 1482-1489. [DOI: 10.1109/ICCV.2005.20]
[5]  Yuan Y, Pang Y, Wang K, et al. Efficient image matching using weighted voting[J]. Pattern Recognition Letters, 2012, 33(4): 471-475. [DOI: 10.1016/j.patrec.2011.02.008]
[6]  Fan B, Wu F, Hu Z. Towards reliable matching of images containing repetitive patterns[J]. Pattern Recognition Letters, 2011, 32(14): 1851-1859. [DOI: 10.1016/j.patrec.2011. 07.029]
[7]  Mortensen E N, Deng H, Shapiro L. A SIFT descriptor with global context[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2005(1): 184-190. [DOI: 10.1109/CVPR. 2005.45]
[8]  Belongie S, Malik J, Puzicha J. Shape context: a new descriptor for shape matching and object recognition[C]//Proceedings of Advances in Neural Information Processing Systems 13. La Jolla, CA: NIPS, 2000: 831-837.
[9]  Carmichael G, Laganière R, Bose P. Global context descriptors for SURF and MSER feature descriptors[C]//Proceedings of Canadian Conference on Computer and Robot Vision. Piscataway, NJ: IEEE, 2010: 309-316. [DOI: 10.1109/CRV. 2010.47]
[10]  Zhang J Y, Bai X J, Xu L Y, et al. A method of correcting SIFT mismatching based on spatial distribution descriptor[J]. Journal of Image and Graphics, 2009, 14(7): 1369-1377. [张洁玉, 白小晶, 徐丽燕, 等. 基于空间分布描述符的SIFT误匹配校正方法[J]. 中国图象图形学报, 2009, 14(7): 1369-1377.][DOI:10.11834/jig.20090721]
[11]  Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [DOI: 10.1023/B:VISI.0000029664.99615. 94]
[12]  Bay H, Tuytelaars T, Van Gool L. Surf: speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2006(1): 404-417. [DOI: 10.1007/11744023_32]
[13]  Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630. [DOI: 10.1109/TPAMI.2005.188]
[14]  Huang C R, Chen C S, Chung P C. Contrast context histogram―an efficient discriminating local descriptor for object recognition and image matching[J]. Pattern Recognition, 2008, 41(10): 3071-3077. [DOI: 10.1016/j.patcog.2008.03.013]
[15]  Calonder M, Lepetit V, Strecha C, et al. BRIEF: binary robust independent elementary features[C]//Proceedings of the 11th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2010(4): 778-792. [DOI: 10.1007/978-3-642-15561-1_56]
[16]  Leutenegger S, Chli M, Siegwart R Y. BRISK: binary robust invariant scalable keypoints[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2011: 2548-2555.[DOI: 10.1109/ICCV.2011.6126542]
[17]  Alahi A, Ortiz R, Vandergheynst P. Freak: fast retina keypoint[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2012: 510-517. [DOI: 10.1109/CVPR.2012.6247715]
[18]  Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2011: 2564-2571.[DOI: 10.1109/ICCV.2011.6126544]
[19]  Tola E, Lepetit V, Fua P. Daisy: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830. [DOI: 10.1109/TPAMI.2009.77]
[20]  Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1): 63-86. [DOI: 10.1023/B:VISI. 0000027790. 02288.f2]
[21]  更多...
[22]  Chen Q, Montesinos P, Sun Q S, et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010, 28(3): 298-306. [DOI: 10.1016/j.imavis. 2009.04.012]
[23]  Luo N, Sun Q S, Geng L L, et al. An extended SURF descriptor and its application in remote sensing images registration[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3): 383-388. [罗楠, 孙权森, 耿蕾蕾, 等. 一种扩展 SURF 描述符及其在遥感图像配准中的应用[J]. 测绘学报, 2013, 42(3): 383-388.]
[24]  Rosten E, Porter R, Drummond T. Faster and better: a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105-119. [DOI: 10.1109/TPAMI.2008.275]
[25]  Guo Y, Mu Z C, Zeng H, et al. Fast rotation-invariant DAISY descriptor for image keypoint matching[C]//IEEE International Symposium on Multimedia. Piscataway, NJ: IEEE, 2010: 183-190. [DOI: 10.1109/ISM. 2010.34]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133