全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

随机场中运动一致性的多线索目标跟踪

DOI: 10.11834/jig.20150107

Keywords: 目标跟踪,多线索,运动一致性,随机场模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的通过建立各线索间的关联,提高多线索目标跟踪方法的鲁棒性,利用简单而有效的模型使多线索目标跟踪方法的表达和实现变得容易。方法在不同线索描述下的目标对象间引入运动一致性约束,利用链状结构随机场模型表达不同线索描述下的目标对象及其约束关系,将多线索目标跟踪问题转化为随机场目标函数的简单优化求解。实验中结合亮度直方图、方向梯度直方图和局部二进制模式描述目标对象。结果15组公测视频序列上的实验结果表明,所提方法相对于多种优秀的目标跟踪方法,在目标受到遮挡、运动模糊、光照变化、背景杂乱等因素干扰时,获得了较低中心位置误差和较高的精度值,反映了所提方法的有效性。结论运动一致性约束能够较好地增强各线索间的关联,通过链状结构的随机场模型表达该约束关系和各线索描述下的目标对象,在提高跟踪鲁棒性的同时,使跟踪方法的实现变得简单。

References

[1]  Topi M, Timo O, Matti P, et al. Robust texture classification by subsets of local binary patterns[C]//Proceedings of the 15th International Conference on Pattern Recognition. Barcelona, Spain: IEEE, 2000, 3: 935-938.
[2]  更多...
[3]  Zhang K, Zhang L, Yang M H. Real-time compressive tracking[C]//Proceedings of the European Conference on Computer Vision. Firenze, Italy: Springer, 2012: 864-877.
[4]  Yang H, Shao L, Zheng F, et al. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
[5]  Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM Computing Surveys, 2006, 38(4): 13(1-45).
[6]  Hou Z Q, Han C Z. A survey of visual tracking[J]. Acta Automatica Sinica, 2006, 32(4): 603-617. [侯志强, 韩崇昭. 视觉跟踪技术综述[J]. 自动化学报, 2006, 32(4): 603-617]
[7]  Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
[8]  Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. South Carolina, USA: IEEE, 2000: 2142-2142.
[9]  Nguyen H T, Smeulders A W M. Robust tracking using foreground-background texture discrimination[J]. International Journal of Computer Vision, 2006, 69(3): 277-293.
[10]  Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting[C]//Proceedings of the British Machine Vision Conference. Edinburgh, UK: BMVA, 2006, 1(5): 1-10.
[11]  Avidan S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271.
[12]  Sevilla-Lara L, Learned-Miller E. Distribution fields for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, USA: IEEE, 2012: 1910-1917.
[13]  Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006, 1: 798-805.
[14]  Mei X, Ling H. Robust visual tracking using l 1 minimization[C]//Proceedings of the IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009: 1436-1443.
[15]  Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
[16]  Ning J F, Zhang L, Zhang D, et al. Robust object tracking using joint color-texture histogram [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(7): 1245-1263.
[17]  Triesch J, Von Der Malsburg C. Democratic integration: self-organized integration of adaptive cues[J]. Neural Computation, 2001, 13(9): 2049-2074.
[18]  Maggio E, Smeraldi F, Cavallaro A. Adaptive multifeature tracking in a particle filtering framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(10): 1348-1359.
[19]  Erdem E, Dubuisson S, Bloch I. Fragments based tracking with adaptive cue integration[J]. Computer Vision and Image Understanding, 2012, 116(7): 827-841.
[20]  Wang Q, Chen F, Xu W. Adaptive multi-cue tracking by online appearance learning[J]. Neurocomputing, 2011, 74(6): 1035-1045.
[21]  Yedidia J S, Freeman W T, Weiss Y. Understanding belief propagation and its generalizations[J]. Exploring Artificial Intelligence in the New Millennium, 2003, 8: 236-239.
[22]  Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005, 1: 886-893.
[23]  Wang D, Lu H, Yang M H. Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-325.
[24]  He S, Yang Q, Lau R W H, et al. Visual tracking via locality sensitive histograms[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Oregon, Portland: IEEE, 2013: 2427-2434.
[25]  Wang N, Wang J, Yeung D Y. Online robust non-negative dictionary learning for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 657-664.
[26]  Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133