全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

稀疏表示和贪婪搜索的人脸分类

DOI: 10.11834/jig.20150105

Keywords: 稀疏表示,贪婪算法,人脸识别,分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的随着稀疏表示方法在图像重建问题中的巨大成功,研究人员提出了一种特殊的分类方法,即基于稀疏表示的分类方法。为了加强样本间的协作表示能力以及减弱稀疏分解时的强L1约束,提出了一种在稀疏分类框架下的迭代剔除机制和贪婪搜索策略的人脸识别方法。方法将测试样本表示成训练样本线性组合的方式,并在所有训练样本中通过迭代计算来消除对分类影响较小的类别和单个样本,在系数分解的过程中采用最小误差正交匹配追踪(EcOMP)算法,进而选择出贡献程度大的类别样本并进行分类。结果在迭代更新样本字典的过程中,强化了真实类别的表示能力,并弱化了分解系数的强L1约束。在所有的实验中,正则化参数λ的取值为0.001,在ORL、FERET和AR3个人脸数据库上,本文算法的识别率可分别达到97.88%、67.95%和94.50%,进而验证了本文算法的有效性。结论提出的在稀疏分类框架下的迭代剔除机制和贪婪搜索策略的人脸识别方法,在动态迭代的机制中完成了样本字典的更新,平衡了协作表示和稀疏约束的关系,相比较原始的稀疏分类模型有更好的准确性和稳定性。

References

[1]  Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108.
[2]  Park S W, Savvides M. A multifactor extension of linear discriminant analysis for face recognition under varying pose and illumination [J]. EURASIP Journal on Advances in Signal Processing, 2010: 6-16.
[3]  Harandi M T, Ahmadabadi M N, Araabi B N. Optimal local basis: a reinforcement learning approach for face recognition [J]. International Journal of Computer Vision, 2009, 81(2): 191-204.
[4]  Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis [J]. The Journal of Machine Learning Research, 2007, 8: 1027-1061.
[5]  Vural V, Fung G, Krishnapuram B. Using local dependencies within batches to improve large margin classifiers [J]. The Journal of Machine Learning Research, 2009, 10: 183-206.
[6]  Liu Z Y, Chiu K C, Xu L. Improved system for object detection and star/galaxy classification via local subspace analysis [J]. Neural Networks, 2003, 16(3): 437-451.
[7]  Sun Y B. Image sparse representation theory and its application to image processing inverse problems [D]. Nanjing:Nanjing University of Science and Technology, 2010.[孙玉宝. 图像稀疏表示模型及其在图像处理反问题中的应用[D]. 南京:南京理工大学, 2010.]
[8]  Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
[9]  Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[10]  Shi Y, Dai D, Liu C, et al. Sparse discriminant analysis for breast cancer biomarker identification and classification [J]. Progress in Natural Science, 2009, 19(11): 1635-1641.
[11]  Xu Y, Fang X Z, Li X L, et al. Data uncertainty in face recognition [J]. IEEE Transactions on Cybernetics, 2014, 44(11): 1950-1961.
[12]  Xu Y, Zhu X J, Li Z M. Using the original and symmetrical face training samples to perform representation based two-step face recognition [J]. Pattern Recognition, 2013, 46:1151-1158.
[13]  Zhu J, Yang W K, Tang Z M. A dictionary learning based kernel sparse representation method for face recognition [J]. Journal of Pattern Recognition and Artificial Intelligence, 2012, 25(5):859-864. [朱杰, 杨万扣, 唐振民. 基于字典学习的核稀疏表示人脸识别方法[J]. 模式识别与人工智能, 2012, 25(5): 859-864.]
[14]  Hu Z P, Song S F. Bi-L1 sparse representation algorithm for face recognition based on fusion of global and separated components [J]. Journal of Pattern Recognition and Artificial Intelligence, 2012, 25(2):78-83. [胡正平,宋淑芬. 基于全局和分离部件融合的双L1稀疏表示人脸图像识别算法[J]. 模式识别与人工智能,2012, 25(2):78-83.]
[15]  Fang X Z, Xu Y, Li X L, et al. Locality and similarity preserving embedding for feature selection [J]. Neurocomputing, 2014, 128:304-315.
[16]  Zhang L, Yang M, Feng X. Sparse representation or collaborative representation: Which helps face recognition? [C]//2011 IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011: 471-478.
[17]  Tibshirani R. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
[18]  Efron B, Hastie T, Johnstone I, et al. Least angle regression [J]. The Annals of Statistics, 2004, 32(2): 407-499.
[19]  Moghadam A E, Shirani S. Matching pursuit-based region-of-interest image coding [J]. IEEE Transactions on Image Processing, 2007, 16(2): 406-415.
[20]  Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321.
[21]  更多...
[22]  Mailhé B, Gribonval R, Vandergheynst P, et al. Fast orthogonal sparse approximation algorithms over local dictionaries [J]. Signal Processing, 2011, 91(12): 2822-2835.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133