Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108.
[2]
Park S W, Savvides M. A multifactor extension of linear discriminant analysis for face recognition under varying pose and illumination [J]. EURASIP Journal on Advances in Signal Processing, 2010: 6-16.
[3]
Harandi M T, Ahmadabadi M N, Araabi B N. Optimal local basis: a reinforcement learning approach for face recognition [J]. International Journal of Computer Vision, 2009, 81(2): 191-204.
[4]
Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis [J]. The Journal of Machine Learning Research, 2007, 8: 1027-1061.
[5]
Vural V, Fung G, Krishnapuram B. Using local dependencies within batches to improve large margin classifiers [J]. The Journal of Machine Learning Research, 2009, 10: 183-206.
[6]
Liu Z Y, Chiu K C, Xu L. Improved system for object detection and star/galaxy classification via local subspace analysis [J]. Neural Networks, 2003, 16(3): 437-451.
[7]
Sun Y B. Image sparse representation theory and its application to image processing inverse problems [D]. Nanjing:Nanjing University of Science and Technology, 2010.[孙玉宝. 图像稀疏表示模型及其在图像处理反问题中的应用[D]. 南京:南京理工大学, 2010.]
[8]
Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
[9]
Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[10]
Shi Y, Dai D, Liu C, et al. Sparse discriminant analysis for breast cancer biomarker identification and classification [J]. Progress in Natural Science, 2009, 19(11): 1635-1641.
[11]
Xu Y, Fang X Z, Li X L, et al. Data uncertainty in face recognition [J]. IEEE Transactions on Cybernetics, 2014, 44(11): 1950-1961.
[12]
Xu Y, Zhu X J, Li Z M. Using the original and symmetrical face training samples to perform representation based two-step face recognition [J]. Pattern Recognition, 2013, 46:1151-1158.
[13]
Zhu J, Yang W K, Tang Z M. A dictionary learning based kernel sparse representation method for face recognition [J]. Journal of Pattern Recognition and Artificial Intelligence, 2012, 25(5):859-864. [朱杰, 杨万扣, 唐振民. 基于字典学习的核稀疏表示人脸识别方法[J]. 模式识别与人工智能, 2012, 25(5): 859-864.]
[14]
Hu Z P, Song S F. Bi-L1 sparse representation algorithm for face recognition based on fusion of global and separated components [J]. Journal of Pattern Recognition and Artificial Intelligence, 2012, 25(2):78-83. [胡正平,宋淑芬. 基于全局和分离部件融合的双L1稀疏表示人脸图像识别算法[J]. 模式识别与人工智能,2012, 25(2):78-83.]
[15]
Fang X Z, Xu Y, Li X L, et al. Locality and similarity preserving embedding for feature selection [J]. Neurocomputing, 2014, 128:304-315.
[16]
Zhang L, Yang M, Feng X. Sparse representation or collaborative representation: Which helps face recognition? [C]//2011 IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011: 471-478.
[17]
Tibshirani R. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
[18]
Efron B, Hastie T, Johnstone I, et al. Least angle regression [J]. The Annals of Statistics, 2004, 32(2): 407-499.
[19]
Moghadam A E, Shirani S. Matching pursuit-based region-of-interest image coding [J]. IEEE Transactions on Image Processing, 2007, 16(2): 406-415.
[20]
Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples [J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321.
[21]
更多...
[22]
Mailhé B, Gribonval R, Vandergheynst P, et al. Fast orthogonal sparse approximation algorithms over local dictionaries [J]. Signal Processing, 2011, 91(12): 2822-2835.