全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

核典型相关性鉴别分析

DOI: 10.11834/jig.20121208

Keywords: 典型相关性,典型差,核线性鉴别分析,核鉴别转换,人脸识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种新的基于典型相关性的核鉴别分析,以图片集为基础的人脸识别算法。把每个图片集映射到一个高维特征空间,然后通过核线性鉴别分析(KLDA)处理,得到相应的核子空间。通过计算两典型向量的典型差来估计两个子空间的相似度。根据核Fisher准则,基于类间典型差与类内典型差的比率建立核子空间的相关性来得到核典型相关性鉴别分析(KDCC)算法。在ORL、NUST603、FERNT和XM2VTS人脸库上的实验结果表明,该算法能够更有效提取样本特征,在识别率上要优于典型相关性鉴别分析(DCC)和核鉴别转换(KDT)算法。

References

[1]  Choi S I, Kim C, Choi C H. Shadow compensation in 2D images for face recognition[J]. Pattern Recognition,2007, 40(7):2118-2125.
[2]  Wang M, Hua X S, Hong R C, et al. Unified video annotation via multi-graph learning[J]. IEEE Trans. On Circuit System and Video Technology. 19(5), 2009:733-746.
[3]  Wang M, Hua X S, Tang J H, et al. Beyond distance measurement: constructing neighborhood similarity for video annotation[J]. IEEE trans. On Multimedia. 2009,11(3):465-476.
[4]  Chu W S, Huang C R, Chen C S. Identifying gender from unaligned facial images by set classification[C]//Proceedings of the 2010 20th International Conference on Pattern Recognition. Washington DC,USA:IEEE Computer Society,2010:2636-2639.
[5]  Yamaguchi O, Fukui K, Maeda K. Face recognition using temporal image sequence[C]//Proceedings of International Conference on Face & Gesture Recognition.Washington DC, USA:IEEE Computer Society,1998:318-323.
[6]  Fukui K, Yamaguchi O. Face recognition using multi-view point patterns for robot vision[J]. International Symposium of Robotics Research,2003,11:192-201.
[7]  Fukui K, Stenger B, Yamaguchi O. A framework for 3D object recognition using the kernel constrained mutual subspace method[J]. Lecture Notes in Computer Science,2006(3852):315-324.
[8]  Chu W S, Chen J C, Lien J J J.Kernel discriminant transformation for image set-based face recognition[J].Pattern Recognition,2011,44(8):1567-1580.
[9]  Sugiyama M. Local fisher discriminant analysis for supervised dimensionality reduction[C]//Proceedings of the 23rd International Conference on Machine Learning.New York, NY, USA:ACM,2006:905-912.
[10]  Lee S W, Moon S H, Lee S W. Face recognition under arbitrary illumina-tion using illuminated exemplars[J]. Pattern Recognition,2007, 40(5):1605-1620.
[11]  Kim T K, Arandjelovic O, Cipolla R.Boosted manifold principal angles for image set-based recognition[J].Pattern Recognition,2007,40(9): 2475-2484.
[12]  Kim T K, Kittler J, Cipolla R. Discriminative learning and re- cognition of image set classes using Canonical Correlations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007, 29(6):1005-1018.
[13]  Chu W S, Chen J C, Lien J J J. Kernel discriminant analysis based on canonical differences for face recognition in image sets[J]. Lecture Notes in Computer Science,2007(4844):700-711.
[14]  Cai D, He X F, Han J W. Speed up kernel discriminant analysis[J]. The VLDB Journal,2011,20(1):187-191.
[15]  Zheng Y J, Yang J Y, Wu X J,et al. A new kernel discriminant analysis algorithm and its application to face recognition[J].Computer Science,2006,33(7):223-226. [郑宇杰,杨静宇,吴小俊,等. 一种新的核线性鉴别分析算法及其在人脸识别上的应用[J].计算机科学,2006,33(7):223-226.]
[16]  Zhou X Y, Zheng W M. Novel face recognition method based on KPCA plus KDA[J].Computer Application,2008,28(5):1263-1226. [周晓彦,郑文明.一种融合KPCA和KDA的人脸识别新方法[J].计算机应用,2008,28(5):1263-1266.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133