全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

视觉机制研究对机器视觉的启发示例

DOI: 10.11834/jig.20130204

Keywords: 灵长类动物的视觉机制,机器视觉方法,合作学习与竞争学习,简单细胞与复杂细胞

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究灵长类的视觉系统机制并以此为基础设计机器视觉的算法已成为重要研究方向,并对机器视觉产生了重要的推动作用。本文从视觉机制和机器视觉方法的角度出发,分析了两大类视觉机制或模型,并列举受其影响和推动的多种重要机器视觉方法:1)合作学习和竞争学习机制,其中合作学习和竞争学习模型相关的机器视觉算法包括立体视觉算法、神经网络、稀疏编码;2)简单细胞和复杂细胞模型,相关的机器视觉算法包括HMAX特征、SIFT描述子和deepbeliefnetwork。

References

[1]  Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 2(60): 91-110.
[2]  Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381(13), 607 609.
[3]  Marr D, Poggio T. Cooperative computation of stereo disparity[J]. Science, 1976, 194(4262): 283-287.
[4]  Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual cortex[C]//Proceedings of CVPR. New York: IEEE, 2005: 1-7.
[5]  Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[6]  Lee H, Grosse R, Ranganath R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of ICML. Montreal, Canada; ACM, 2009:1-8.
[7]  Foldiak P, Fiildihk P. Forming sparse representations by local anti-hebbian learning[J]. Biol. Cybern., 1990, 64(2): 165-170.
[8]  Samonds J M, Potetz B R, Lee T S. Cooperative and competitive interactions facilitate stereo computations in macaque primary visual cortex[J]. The Journal of Neuroscience, 2009, 29(50): 15780-15795.
[9]  Hubel D H, Wiesel T N. Receptive fields of single neurons in the cat\'s striate cortex[J]. J. Physiol. 1959, 148(3): 574-591.
[10]  Lee T S. Image representation using 2D Gabor wavelets[J]. IEEE Transactions of Pattern Analysis and Machine Intelligence, 1996, 18(10), 959-971.
[11]  Riesenhuber M, Poggio T. Models of object recognition[J]. Nature Neuroscience, 2000, 3(11): 1199-1204.
[12]  Mutch J, Lowe D. Object class recognition and localization using sparse features with limited receptive fields[J]. International Journal of Computer Vision, 2008, 80 (1): 45-57.
[13]  Sande K E A, Gevers T, Snoek C G M. Evaluating color descriptors for object and scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (9): 1582-1596.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133