Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 2(60): 91-110.
[2]
Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381(13), 607 609.
[3]
Marr D, Poggio T. Cooperative computation of stereo disparity[J]. Science, 1976, 194(4262): 283-287.
[4]
Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual cortex[C]//Proceedings of CVPR. New York: IEEE, 2005: 1-7.
[5]
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[6]
Lee H, Grosse R, Ranganath R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of ICML. Montreal, Canada; ACM, 2009:1-8.
[7]
Foldiak P, Fiildihk P. Forming sparse representations by local anti-hebbian learning[J]. Biol. Cybern., 1990, 64(2): 165-170.
[8]
Samonds J M, Potetz B R, Lee T S. Cooperative and competitive interactions facilitate stereo computations in macaque primary visual cortex[J]. The Journal of Neuroscience, 2009, 29(50): 15780-15795.
[9]
Hubel D H, Wiesel T N. Receptive fields of single neurons in the cat\'s striate cortex[J]. J. Physiol. 1959, 148(3): 574-591.
[10]
Lee T S. Image representation using 2D Gabor wavelets[J]. IEEE Transactions of Pattern Analysis and Machine Intelligence, 1996, 18(10), 959-971.
[11]
Riesenhuber M, Poggio T. Models of object recognition[J]. Nature Neuroscience, 2000, 3(11): 1199-1204.
[12]
Mutch J, Lowe D. Object class recognition and localization using sparse features with limited receptive fields[J]. International Journal of Computer Vision, 2008, 80 (1): 45-57.
[13]
Sande K E A, Gevers T, Snoek C G M. Evaluating color descriptors for object and scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (9): 1582-1596.