全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向部件遮挡补偿的车辆检测模型

DOI: 10.11834/jig.20141212

Keywords: 车辆检测,遮挡,部件模型,单视点可见概率,多视点可见概率

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的复杂场景中多目标间的遮挡,会造成车辆视觉信息损失,致使车辆检测出现漏检问题。方法为解决遮挡车辆漏检问题,提出一种遮挡补偿模型,分析车辆部件的单视点/多视点可见概率,弥补已有基于部件的车辆检测模型对遮挡区域信息描述的不足。首先,通过外观模型估计车辆候选区域,确定车辆各部件的位置和相似程度,判定车辆部件的遮挡情况,并获得外观项和结构项;其次,计算车辆区域的单视点可见概率和多视点可见概率,并获取被遮挡的部件中心点对应的单视点/多视点可见概率,作为车辆检测的补偿项,调整遮挡部分的检测得分;最后,将车辆检测的外观项、结构项和补偿项,统一到遮挡补偿模型中,实现对候选区域的车辆判断。结果实验结果表明,对比于现有的车辆检测模型,本文算法在PASCAL、MSRC以及真实场景中车辆检测结果对应的P-R曲线性能更佳。结论该遮挡补偿模型在保持虚警率的同时,能够有效提升遮挡车辆的检测准确性。

References

[1]  Hsiao E, Hebert M. Occlusion reasoning for object detection under arbitrary viewpoint[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 3146-3153.
[2]  更多...
[3]  Hsiao E, Hebert M. Occlusion reasoning for object detection under arbitrary viewpoint[J]. Pattern Analysis and Machine Intelligence, 2014: 3146-3153
[4]  Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005, 1: 886-893.
[5]  Bak?c? T, Almirall E, Wareham J. A smart city initiative: the case of Barcelona[J]. Journal of the Knowledge Economy, 2013, 4(2): 135-148.
[6]  Zou Y, Shi H, Wang Y, et al. A robust traffic parameter extraction approach for surveillance system at urban intersection[C]// Proceedings of the 2nd International Congress on Image and Signal. Tianjin, China: IEEE, 2009: 1-5.
[7]  Zhu L, Chen Y, Torralba A, et al. Part and appearance sharing: Recursive compositional models for multi-view[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 1919-1926.
[8]  Lin Z, Hua G, Davis L S. Multiple instance feature for robust part-based object detection[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Miami, FL, USA: IEEE, 2009: 405-412.
[9]  Wang P, Huang K Q. Highway vehicle detection at night based on video[J]. Journal of Image and Graphics, 2010, 15(2): 301-306. [王鹏, 黄凯奇. 基于视频的夜间高速公路车辆事件检测[J]. 中国图象图形学报, 2010, 15(2): 301-306.][DOI:10.11834/jig.20100218]
[10]  Ren X, Ramanan D. Histograms of sparse codes for object detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013: 3246-3253.
[11]  Girshick R B, Felzenszwalb P F, Mcallester D A. Object detection with grammar models[C]// Proceedings of the 25th Annual Conference on Neural Information Processing Systems. Granada, Spain: MIT Press, 2011: 442-450.
[12]  Wu B, Nevatia R. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors[J]. International Journal of Computer Vision, 2007, 75(2): 247-266.
[13]  Wu B, Nevatia R. Detection and segmentation of multiple, partially occluded objects by grouping, merging, assigning part detection responses[J]. International Journal of Computer Vision, 2009, 82(2): 185-204.
[14]  Zhang Z, Wang H Q, Sun X, et al. An automatic method for targets detection using a component-based model[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1017-1022. [张正, 王宏琦, 孙显,等. 基于部件的自动目标检测方法研究[J]. 电子与信息学报, 2010, 32(5): 1017-1022.]
[15]  Lin Z, Davis L S. Shape-based human detection and segmentation via hierarchical part-template matching[J]. Pattern Analysis and Machine Intelligence, 2010, 32(4): 604-618.
[16]  Lu W H, Li Y L, Wang S J, et al. Improvements of 3D object detection with part-based models[J]. Acta Automatica Sinica, 2012, 38(4): 497-506. [鹿文浩, 李亚利, 王生进, 等. 基于部件的三维目标检测算法新进展[J]. 自动化学报, 2012, 38(4): 497-506.]
[17]  Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models[J]. Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
[18]  Felzenszwalb P F, Girshick R B, McAllester D. Cascade object detection with deformable part models[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 2241-2248.
[19]  Vedaldi A, Zisserman A. Structured output regression for detection with partial occlusion[C]// Proceedings of the 23rd Annual Conference on Neural Information Processing Systems. Vancouver, BC, Canada: MIT Press, 2009: 1928-1936.
[20]  Gao T, Packer B, Koller D. A segmentation-aware object detection model with occlusion handling[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011: 1361-1368.
[21]  Kwak S, Nam W, Han B, et al. Learning occlusion with likelihoods for visual tracking[C]// Proceedings of IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 1551-1558.
[22]  Kokkinos I. Bounding part scores for rapid detection with deformable part models[C]// Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012: 41-50.
[23]  Dollar P, Wojek C, Schiele B, et al. Pedestrian detection: an evaluation of the state of the art[J]. Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133