Hadid A, Pietikinen M, Ahonen T. A discriminative feature space for detecting and recognizing faces [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE Computer Society, 2004, 2: 797-804.
[2]
Zhou L, Zhou Z T, Hu D W. Scene classification using a multi-resolution bag-of-features model [J]. Pattern Recognition, 2013, 46(1): 424-433.
[3]
University of OULU. LBP-Bibliography. [OB/OL][2013-10-1]http://www.ee.oulu.fi/mvg/page/lbp_bibliography/.
[4]
Xie X, Mirmehdi M. A galaxy of texture features [M]// Mirmehdi M, Xie X, Suri J. Handbook of Texture Analysis. London: Imperial College Press, 2008: 375-406.
[5]
更多...
[6]
Randen T, Husoy J. Filtering for texture classification: a comparative study [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (4): 291-310.
[7]
Fernández A, álvarez M, Bianconi F. Texture description through histograms of equivalent patterns [J]. Journal of Mathematical Imaging and Vision, 2013, 45(1): 76-102.
[8]
Pietikinen M. Image analysis with local binary patterns [C]//Proceedings of Scandinavian Conference on Image Analysis, Berlin Heidelberg:Springer, 2005, 3540: 115-118.
[9]
Nanni L, Brahnam S, Lumini. A Survey on LBP based texture descriptors for image classification [J]. Expert Systems with Applications, 2012, 39(3): 3634-3641.
[10]
Hadid A, Ahonen T, Pietik?inen M. Face analysis using local binary patterns [C]//Handbook of Texture Analysis, Mirmehdi. London, UK: Imperial College Press, 2008: 347-373.
[11]
Hadid A. The local binary pattern approach and its applications to face analysis [C]//Proceedings of International Workshops on Image Processing, Theory, Tools and Application. Washington DC, USA: IEEE Computer Society, 2008: 1-9.
[12]
Huang D, Shan C F, Ardabilian M, et al. Local Binary Patterns and its application to facial image analysis: a survey [J]. IEEE Trans. on Systems, Man, And Cybernetics-Part C: Applications And Reviews, 2011, 41(6): 765-781.
[13]
Zabih R, Woodfill J. Non-parametric local transforms for computing visual correspondence[C]//Proceedings of the 3rd European Conference on Computer Vision. Berlin Heidelberg: Springer, 1994: 151-158.
[14]
He D C, Wang L. Unsupervised textural classification of images using the texture spectrum [J]. Pattern Recognition, 1992, 25(3): 247-255.
[15]
He D C, Wang L. Texture features based on texture spectrum [J]. Pattern Recognition, 1991, 24(5): 391-399.
[16]
Zhang G, Huang X, Li S Z, et al. Boosting local binary pattern-based face recognition [C]//Proceeding of Advances in Biometric Person Authentication, 5th Chinese Conference on Biometric Recognition. Guangzhou, China: Springer Berlin Heidelberg, 2004: 179-186.
[17]
He L, Zou C, Zhao L, et al. An enhanced LBP feature based on facial expression recognition [C]//Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society. Shanghai, China: Springer Berlin Heidelberg, 2005: 3300-3303.
[18]
Fu X, Wei W. Centralized binary patterns embedded with image Euclidean distance for facial expression recognition [C]//Proceedings of International Conference on Neural Computation. Jinan, China: IEEE Computer Society, 2008: 115-119.
[19]
Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
[20]
Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19 (7): 711-720.
[21]
Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[22]
Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey [J]. ACM Computing Survey, 2003, 35(4): 399-458.
[23]
Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis [J]. IEEE Trans. on Neural Networks, 2002, 13(6): 1450-1464.
[24]
Shan C, Gong S, McOwan P. Facial expression recognition based on local binary patterns: a comprehensive study [J], Image and Vision Computing, 2009, 27(6): 803-816.
[25]
Heikkil J, Ojansivu V, Rahtu E. Improved blur insensitivity for decorrelated local phase quantization [C]//Proceedings of the 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE Computer Society, 2010, 5099: 818-821.
[26]
Heisele B, Ho P, Wu J, et al. Face recognition: component based versus global approaches [J]. Computer Vision and Image Understanding, 2003, 91(1): 6-12.
[27]
Bianconi F, Fernandez A. On the occurrence probability of local binary patterns a theoretical study [J]. Journal of Mathematical Imaging and Vision, 2011, 40(3): 259-268.
[28]
Ojala T, Pietikinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions [C]//Proceedings of the 12th International IAPR Conference on Pattern Recognition. Jerusalem, Palestine: IEEE Computer Society, 1994, 1: 582-585.
[29]
Pietikinen M, Ojala T, Nisula J, et al. Experiments with two industrial problems using texture classification based on feature distributions [C]//Proceedings of SPIE 2354, Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision. Boston, MA: IEEE Computer Society, 1994, 2354: 197-204.
[30]
Ojala T, Pietikinen M, Menp T. Multiresolution gray scale and rotation invariant texture classification with local binary patterns [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (7): 971-987.
[31]
Ojala T, Pietikinen M, Menp T. Gray scale and rotation invariant texture classification with local binary patterns [C]//Proceedings of IEEE European Conference on Computer Vision, Lecture Notes in Computer Science. Berlin Heidelberg: Springer, 2000, 1842: 404-420.
[32]
Pietikinen M, Nurmela T, Menp T, et al. View-based recognition of real-world textures [J]. Pattern Recognition, 2004, 37(2): 313-323.
[33]
Ojala T, Pietikinen M, Harwood D. A comparative study of texture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1): 51-59.
[34]
Li S Z, Jain A K. Handbook of Face Recognition [M]. Berlin, Germany: Springer-Verlag, 2004.
[35]
Ahonen T, Hadid A, Pietikinen M. Face description with local binary patterns: application to face recognition [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041.
[36]
Pietikinen M, Ojala T, Xu Z. Rotation-invariant texture classification using feature distributions [J]. Pattern Recognition, 2000, 33(1): 43-52.
[37]
Gong P, Marceau D J, Howarth P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data [J]. Remote Sensing of Environment, 1992, 40: 137-151.
[38]
Zhao G Y, Pietikinen M. Dynamic texture recognition using local binary patterns with an application to facial expressions [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29 (6): 915-928.
[39]
Murala S, Maheshwari R P, Balasubramanian R. Local tetra patterns: a new feature descriptor for content-based image retrieval [J]. IEEE Trans. on Image Processing, 2012, 21(5): 2874-2886.
[40]
Zhao G Y, Pietikinen M. Discriminative features for texture description [J]. Pattern Recognition, 2012, 45(10): 3834-3843.
[41]
Nanni L, Brahnam S, Lumini A. A local approach based on a local binary patterns variant texture descriptor for classifying pain states [J]. Expert Systems with Applications, 2010, 37(12): 7888-7894.
[42]
Nanni L, Lumini A, Brahnam S. Local binary patterns variants as texture descriptors for medical image analysis [J]. Artificial Intelligence in Medicine, 2010, 49(2): 117-125.
[43]
Jin H, Liu Q, Lu H, et al. Face detection using improved LBP under Bayesian framework [C]//IEEE First Symposium on Multi-Agent Security and Survivability. Washington DC, USA: IEEE, 2004: 306-309.
[44]
Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[45]
Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
[46]
Lazebnik S, Schmid C, Ponce J. A sparse texture representation using local affine regions [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1265-1278.
[47]
Liu L, Zhao L J, Long Y L, et al. Extended local binary patterns for texture classification [J]. Image Vision Computer, 2012, 30(2): 80-99.
[48]
Hafianel A, Seetharaman G, Zavidovique B. Median binary pattern for textures classification [C]//Proceedings of International Conference on Image Analysis and Recognition. Berlin Heidelberg: Springer, 2007: 387-398.
[49]
Liao S, Law M W K, Chung A C S. Dominant local binary patterns for texture classification [J]. IEEE Trans. on Image Processing, 2009, 18 (5): 1107-1118.
[50]
Guo Z, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification [J]. IEEE Trans. on Image Processing, 2010, 9 (16): 1657-1663.
[51]
Yang H, Wang Y. A LBP-based face recognition method with Hamming distance constraint [C]//Proceedings of IEEE International Conference on Image Graphics. Sichuan, China: IEEE Computer Society, 2007: 645-649.
[52]
Khellah F. Texture classification using dominant neighborhood structure [J]. IEEE Trans. on Image Processing, 2011, 20(11): 3270-3279.
[53]
Fehr J. Rotational invariant uniform local binary patterns for full 3D volume texture analysis [C]//Finlish Signal Processing Symposium. Oulu, Finland, 2007.
[54]
Paulhac L, Makris P, Ramel J Y. Comparison between 2D and 3D local binary pattern methods for characterization of three dimensional textures [C]//Proceedings of International Conference on Image Analysis and Recognition. Berlin Heidelberg: Springer, 2008: 670-679.
[55]
Liao S, Chung A C S. Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude [C]//Proceedings of Asian Conference on Computer Vision. Berlin Heidelberg: Springer, 2007: 672-679.
[56]
Liu L, Fieguth P, Kuang G. Generalized local binary patterns for texture classification [C]//British Machine Vision Conference. Dundee, UK: BMVC, 2011.
[57]
Jin H, Liu Q, Tang X, et al. Learning local descriptors for face detection [C]//Proceedings of IEEE International Conference on Multimedia Expo. Amsterdam, Holland: IEEE Computer Society, 2005: 928-931.
[58]
Zhou H, Wang R, Wang C. A novel extended local binary pattern operator for texture analysis [J]. Information Sciences, 2008, 178(22)e on Computer Vision. Barcelona, Spain: IEEE Computer Society, 2011, 2548-2555.
[59]
Alahi A, Ortiz R, Vandergheynst P. FREAK: fast retina keypoint [C]//Proceedings of International Conference on Computer Vision and Pattern Recognition. RI Providence, USA:IEEE Computer Society, 2012: 510-517.
[60]
Alahi A, Ortiz R, Vandergheynst P. FREAK: fast retina keypoint [C]//Proceedings of International Conference on Computer Vision and Pattern Recognition. RI Providence, USA:IEEE Computer Society, 2012: 510-517.
[61]
Xu B, Gong P, Seto E, et al. Comparison of gray-level reduction and different texture spectrum encoding methods for land-use classification using a panchromatic Ikonos image [J]. Photogrammetric Engineering and Remote Sensing, 2003, 69(5): 529-536.
[62]
Ahonen T, Pietikinen M. Soft histograms for local binary patterns [C]//Finnish Signal Processing Symposium. Berlin Heidelberg: Springer, 2007.
[63]
Manjunathi B S, Ma W Y. Texture features for browsing and retrieval of image data [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842.
[64]
Ma B, Zhang W, Shan S, et al. Robust head pose estimation using LGBP [C]//Proceedings of International Conference on Pattern Recognition. Hongkong, China: IEEE Computer Society, 2006: 512-515.
[65]
Zhang W, Shan S, Gao W, et al. Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition [C]//Proceedings of International Conference on Computer Vision. Beijing, China: IEEE Computer Society, 2005: 786-791.
[66]
Shan S, Zhang W, Su Y, et al. Ensemble of piecewise FDA based on spatial histograms of local (Gabor) binary patterns for face recognition [C]//Proceedings of IEEE International Conference on Pattern Recognition. Hongkong, China: IEEE Computer Society, 2006: 606-609.
[67]
Chan C, Kittler J, Messer K. Multi-scale local binary pattern histograms for face recognition [C]//Proceedings of International Conference on Biometrics. Berlin Heidelberg: Springer, 2007: 809-818.
[68]
Engin T, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.
[69]
Guo Z, Zhang L, Zhang D. Rotation invariant texture classification using LBP variance (LBPV) with global matching [J]. Pattern Recognition, 2010, 43(3): 706-719.
[70]
Nanni L, Brahnam S, Lumini A. A simple method for improving local binary patterns by considering nonuniform patterns [J]. Pattern Recognition, 2012, 45(10): 3844-3852.
[71]
Qian X, Hua X S, Cheng P, et al. PLBP: an effective local binary patterns texture descriptor with pyramid representation [J]. Pattern Recognition, 2011, 44(10-11): 2502-2515.
[72]
Li Z, Liu G, Yang Y, et al. Scale and rotation invariant local binary pattern using scale-adaptive texton and subuniform based circular shift [J]. IEEE Trans. on Image Processing, 2012, 21(4): 2130-2140.
[73]
Oja E, Valkealahti K. Co-occurrence map: quantizing multidimensional texture histograms [J]. Pattern Recognition Letters, 1996, 17(7): 723-730.
[74]
Unser M. Sum and difference histograms for texture classification [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986, 8 (1): 118-125.
[75]
Ojala T, Valkealahti K, Oja E, et al. Texture discrimination with multidimensional distributions of signed gray level differences [J]. Pattern Recognition, 2001, 34 (3): 727-739.
[76]
Liu L, Fieguth P. Texture classification from random features [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34(3): 574-586.
[77]
Liu L, Fieguth P, Kuang G Y, et al. Sorted random projections for robust texture classification[C]// Proceedings of IEEE International Conference on Computer Vision. Washington DC, USA: IEEE, 2011: 391-398.
[78]
Leung T, Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons [J]. International Journal of Computer Vision, 2001, 43(1): 29-44.
[79]
Zhang J, Marszalek M, Lazebnik S, et al. Local features and kernels for classification of texture and object categories: a comprehensive study [J]. International Journal of Computer Vision, 2007, 73(2): 213-238.
[80]
Crosier M, Griffin L. Using basic image features for texture classification[J]. International Journal of Computer Vision, 2010, 88(3): 447-460.
[81]
Shan C, Gritti T. Learning discriminative LBP-histogram bins for facial expression recognition [C]//Proceedings of British Machine Vision Conference. Leeds, UK: BMVC, 2008.
[82]
Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE Computer Society, 2001: 511-518.
[83]
Chen J, Shan S, He C, et al. WLD: a robust local image descriptor [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 (9): 1705-1720.
[84]
Huang D, Ardabilian M, Wang Y, et al. A novel geometric facial representation based on multi-scale extended local binary patterns [C]//Proceedings of the 9th IEEE International Conference on Automatic Face and Gesture Recognition and Workshops. Santa Barbara, USA: IEEE Computer Society, 2011: 1-7.