全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

局部二进制模式方法综述

DOI: 10.11834/jig.20141202

Keywords: 局部二进制模式,纹理分类,人脸识别,旋转不变,多尺度分析,局部特征描述子

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的局部二进制模式(LBP)是一种理论简单、计算高效的非参数局部纹理特征描述子。由于其具有较高的特征鉴别力和较低的计算复杂度,因此近期获得了越来越多的关注,在图像分析、计算机视觉和模式识别领域得到了广泛的应用,尤其是在纹理分类和人脸识别两个经典的模式识别问题中,LBP方法得到充分的研究和发展。鉴于LBP的理论意义和实用价值,为了使国内外同行对LBP方法有一个较为全面的了解,对其进行系统总结。方法在广泛文献调研的基础上,主要以纹理分类和人脸识别为应用背景,系统综述了LBP及现有各种LBP各种改进方法,从每种方法的研究动机、解决思路和方法特点及性能等方面进行总结。结果首先,回顾了LBP方法的发展历程,综述了LBP及其众多改进方法的基本原理,系统梳理和评述了各种LBP方法的优势与不足,并在统一框架下对各种LBP方法进行分类总结;然后,综述了LBP及其各种改进方法在纹理分类和人脸识别中的应用研究,并总结了一些方法在基准数据库上达到的最高分类正确率;最后,凝练出LBP方法进一步的发展方向。结论LBP方法的研究仍然是计算机视觉和模式识别领域倍受青睐的热点研究领域,仍然有更多低存储、快速的二值特征描述子被提出,LBP方法的应用领域仍在继续拓展。

References

[1]  Hadid A, Pietikinen M, Ahonen T. A discriminative feature space for detecting and recognizing faces [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE Computer Society, 2004, 2: 797-804.
[2]  Zhou L, Zhou Z T, Hu D W. Scene classification using a multi-resolution bag-of-features model [J]. Pattern Recognition, 2013, 46(1): 424-433.
[3]  University of OULU. LBP-Bibliography. [OB/OL][2013-10-1]http://www.ee.oulu.fi/mvg/page/lbp_bibliography/.
[4]  Xie X, Mirmehdi M. A galaxy of texture features [M]// Mirmehdi M, Xie X, Suri J. Handbook of Texture Analysis. London: Imperial College Press, 2008: 375-406.
[5]  更多...
[6]  Randen T, Husoy J. Filtering for texture classification: a comparative study [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (4): 291-310.
[7]  Fernández A, álvarez M, Bianconi F. Texture description through histograms of equivalent patterns [J]. Journal of Mathematical Imaging and Vision, 2013, 45(1): 76-102.
[8]  Pietikinen M. Image analysis with local binary patterns [C]//Proceedings of Scandinavian Conference on Image Analysis, Berlin Heidelberg:Springer, 2005, 3540: 115-118.
[9]  Nanni L, Brahnam S, Lumini. A Survey on LBP based texture descriptors for image classification [J]. Expert Systems with Applications, 2012, 39(3): 3634-3641.
[10]  Hadid A, Ahonen T, Pietik?inen M. Face analysis using local binary patterns [C]//Handbook of Texture Analysis, Mirmehdi. London, UK: Imperial College Press, 2008: 347-373.
[11]  Hadid A. The local binary pattern approach and its applications to face analysis [C]//Proceedings of International Workshops on Image Processing, Theory, Tools and Application. Washington DC, USA: IEEE Computer Society, 2008: 1-9.
[12]  Huang D, Shan C F, Ardabilian M, et al. Local Binary Patterns and its application to facial image analysis: a survey [J]. IEEE Trans. on Systems, Man, And Cybernetics-Part C: Applications And Reviews, 2011, 41(6): 765-781.
[13]  Zabih R, Woodfill J. Non-parametric local transforms for computing visual correspondence[C]//Proceedings of the 3rd European Conference on Computer Vision. Berlin Heidelberg: Springer, 1994: 151-158.
[14]  He D C, Wang L. Unsupervised textural classification of images using the texture spectrum [J]. Pattern Recognition, 1992, 25(3): 247-255.
[15]  He D C, Wang L. Texture features based on texture spectrum [J]. Pattern Recognition, 1991, 24(5): 391-399.
[16]  Zhang G, Huang X, Li S Z, et al. Boosting local binary pattern-based face recognition [C]//Proceeding of Advances in Biometric Person Authentication, 5th Chinese Conference on Biometric Recognition. Guangzhou, China: Springer Berlin Heidelberg, 2004: 179-186.
[17]  He L, Zou C, Zhao L, et al. An enhanced LBP feature based on facial expression recognition [C]//Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society. Shanghai, China: Springer Berlin Heidelberg, 2005: 3300-3303.
[18]  Fu X, Wei W. Centralized binary patterns embedded with image Euclidean distance for facial expression recognition [C]//Proceedings of International Conference on Neural Computation. Jinan, China: IEEE Computer Society, 2008: 115-119.
[19]  Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
[20]  Belhumeur P, Hespanha J, Kriegman D. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19 (7): 711-720.
[21]  Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[22]  Zhao W, Chellappa R, Phillips P J, et al. Face recognition: a literature survey [J]. ACM Computing Survey, 2003, 35(4): 399-458.
[23]  Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis [J]. IEEE Trans. on Neural Networks, 2002, 13(6): 1450-1464.
[24]  Shan C, Gong S, McOwan P. Facial expression recognition based on local binary patterns: a comprehensive study [J], Image and Vision Computing, 2009, 27(6): 803-816.
[25]  Heikkil J, Ojansivu V, Rahtu E. Improved blur insensitivity for decorrelated local phase quantization [C]//Proceedings of the 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE Computer Society, 2010, 5099: 818-821.
[26]  Heisele B, Ho P, Wu J, et al. Face recognition: component based versus global approaches [J]. Computer Vision and Image Understanding, 2003, 91(1): 6-12.
[27]  Bianconi F, Fernandez A. On the occurrence probability of local binary patterns a theoretical study [J]. Journal of Mathematical Imaging and Vision, 2011, 40(3): 259-268.
[28]  Ojala T, Pietikinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions [C]//Proceedings of the 12th International IAPR Conference on Pattern Recognition. Jerusalem, Palestine: IEEE Computer Society, 1994, 1: 582-585.
[29]  Pietikinen M, Ojala T, Nisula J, et al. Experiments with two industrial problems using texture classification based on feature distributions [C]//Proceedings of SPIE 2354, Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision. Boston, MA: IEEE Computer Society, 1994, 2354: 197-204.
[30]  Ojala T, Pietikinen M, Menp T. Multiresolution gray scale and rotation invariant texture classification with local binary patterns [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (7): 971-987.
[31]  Ojala T, Pietikinen M, Menp T. Gray scale and rotation invariant texture classification with local binary patterns [C]//Proceedings of IEEE European Conference on Computer Vision, Lecture Notes in Computer Science. Berlin Heidelberg: Springer, 2000, 1842: 404-420.
[32]  Pietikinen M, Nurmela T, Menp T, et al. View-based recognition of real-world textures [J]. Pattern Recognition, 2004, 37(2): 313-323.
[33]  Ojala T, Pietikinen M, Harwood D. A comparative study of texture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1): 51-59.
[34]  Li S Z, Jain A K. Handbook of Face Recognition [M]. Berlin, Germany: Springer-Verlag, 2004.
[35]  Ahonen T, Hadid A, Pietikinen M. Face description with local binary patterns: application to face recognition [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041.
[36]  Pietikinen M, Ojala T, Xu Z. Rotation-invariant texture classification using feature distributions [J]. Pattern Recognition, 2000, 33(1): 43-52.
[37]  Gong P, Marceau D J, Howarth P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data [J]. Remote Sensing of Environment, 1992, 40: 137-151.
[38]  Zhao G Y, Pietikinen M. Dynamic texture recognition using local binary patterns with an application to facial expressions [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29 (6): 915-928.
[39]  Murala S, Maheshwari R P, Balasubramanian R. Local tetra patterns: a new feature descriptor for content-based image retrieval [J]. IEEE Trans. on Image Processing, 2012, 21(5): 2874-2886.
[40]  Zhao G Y, Pietikinen M. Discriminative features for texture description [J]. Pattern Recognition, 2012, 45(10): 3834-3843.
[41]  Nanni L, Brahnam S, Lumini A. A local approach based on a local binary patterns variant texture descriptor for classifying pain states [J]. Expert Systems with Applications, 2010, 37(12): 7888-7894.
[42]  Nanni L, Lumini A, Brahnam S. Local binary patterns variants as texture descriptors for medical image analysis [J]. Artificial Intelligence in Medicine, 2010, 49(2): 117-125.
[43]  Jin H, Liu Q, Lu H, et al. Face detection using improved LBP under Bayesian framework [C]//IEEE First Symposium on Multi-Agent Security and Survivability. Washington DC, USA: IEEE, 2004: 306-309.
[44]  Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[45]  Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
[46]  Lazebnik S, Schmid C, Ponce J. A sparse texture representation using local affine regions [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1265-1278.
[47]  Liu L, Zhao L J, Long Y L, et al. Extended local binary patterns for texture classification [J]. Image Vision Computer, 2012, 30(2): 80-99.
[48]  Hafianel A, Seetharaman G, Zavidovique B. Median binary pattern for textures classification [C]//Proceedings of International Conference on Image Analysis and Recognition. Berlin Heidelberg: Springer, 2007: 387-398.
[49]  Liao S, Law M W K, Chung A C S. Dominant local binary patterns for texture classification [J]. IEEE Trans. on Image Processing, 2009, 18 (5): 1107-1118.
[50]  Guo Z, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification [J]. IEEE Trans. on Image Processing, 2010, 9 (16): 1657-1663.
[51]  Yang H, Wang Y. A LBP-based face recognition method with Hamming distance constraint [C]//Proceedings of IEEE International Conference on Image Graphics. Sichuan, China: IEEE Computer Society, 2007: 645-649.
[52]  Khellah F. Texture classification using dominant neighborhood structure [J]. IEEE Trans. on Image Processing, 2011, 20(11): 3270-3279.
[53]  Fehr J. Rotational invariant uniform local binary patterns for full 3D volume texture analysis [C]//Finlish Signal Processing Symposium. Oulu, Finland, 2007.
[54]  Paulhac L, Makris P, Ramel J Y. Comparison between 2D and 3D local binary pattern methods for characterization of three dimensional textures [C]//Proceedings of International Conference on Image Analysis and Recognition. Berlin Heidelberg: Springer, 2008: 670-679.
[55]  Liao S, Chung A C S. Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude [C]//Proceedings of Asian Conference on Computer Vision. Berlin Heidelberg: Springer, 2007: 672-679.
[56]  Liu L, Fieguth P, Kuang G. Generalized local binary patterns for texture classification [C]//British Machine Vision Conference. Dundee, UK: BMVC, 2011.
[57]  Jin H, Liu Q, Tang X, et al. Learning local descriptors for face detection [C]//Proceedings of IEEE International Conference on Multimedia Expo. Amsterdam, Holland: IEEE Computer Society, 2005: 928-931.
[58]  Zhou H, Wang R, Wang C. A novel extended local binary pattern operator for texture analysis [J]. Information Sciences, 2008, 178(22)e on Computer Vision. Barcelona, Spain: IEEE Computer Society, 2011, 2548-2555.
[59]  Alahi A, Ortiz R, Vandergheynst P. FREAK: fast retina keypoint [C]//Proceedings of International Conference on Computer Vision and Pattern Recognition. RI Providence, USA:IEEE Computer Society, 2012: 510-517.
[60]  Alahi A, Ortiz R, Vandergheynst P. FREAK: fast retina keypoint [C]//Proceedings of International Conference on Computer Vision and Pattern Recognition. RI Providence, USA:IEEE Computer Society, 2012: 510-517.
[61]  Xu B, Gong P, Seto E, et al. Comparison of gray-level reduction and different texture spectrum encoding methods for land-use classification using a panchromatic Ikonos image [J]. Photogrammetric Engineering and Remote Sensing, 2003, 69(5): 529-536.
[62]  Ahonen T, Pietikinen M. Soft histograms for local binary patterns [C]//Finnish Signal Processing Symposium. Berlin Heidelberg: Springer, 2007.
[63]  Manjunathi B S, Ma W Y. Texture features for browsing and retrieval of image data [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842.
[64]  Ma B, Zhang W, Shan S, et al. Robust head pose estimation using LGBP [C]//Proceedings of International Conference on Pattern Recognition. Hongkong, China: IEEE Computer Society, 2006: 512-515.
[65]  Zhang W, Shan S, Gao W, et al. Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition [C]//Proceedings of International Conference on Computer Vision. Beijing, China: IEEE Computer Society, 2005: 786-791.
[66]  Shan S, Zhang W, Su Y, et al. Ensemble of piecewise FDA based on spatial histograms of local (Gabor) binary patterns for face recognition [C]//Proceedings of IEEE International Conference on Pattern Recognition. Hongkong, China: IEEE Computer Society, 2006: 606-609.
[67]  Chan C, Kittler J, Messer K. Multi-scale local binary pattern histograms for face recognition [C]//Proceedings of International Conference on Biometrics. Berlin Heidelberg: Springer, 2007: 809-818.
[68]  Engin T, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.
[69]  Guo Z, Zhang L, Zhang D. Rotation invariant texture classification using LBP variance (LBPV) with global matching [J]. Pattern Recognition, 2010, 43(3): 706-719.
[70]  Nanni L, Brahnam S, Lumini A. A simple method for improving local binary patterns by considering nonuniform patterns [J]. Pattern Recognition, 2012, 45(10): 3844-3852.
[71]  Qian X, Hua X S, Cheng P, et al. PLBP: an effective local binary patterns texture descriptor with pyramid representation [J]. Pattern Recognition, 2011, 44(10-11): 2502-2515.
[72]  Li Z, Liu G, Yang Y, et al. Scale and rotation invariant local binary pattern using scale-adaptive texton and subuniform based circular shift [J]. IEEE Trans. on Image Processing, 2012, 21(4): 2130-2140.
[73]  Oja E, Valkealahti K. Co-occurrence map: quantizing multidimensional texture histograms [J]. Pattern Recognition Letters, 1996, 17(7): 723-730.
[74]  Unser M. Sum and difference histograms for texture classification [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1986, 8 (1): 118-125.
[75]  Ojala T, Valkealahti K, Oja E, et al. Texture discrimination with multidimensional distributions of signed gray level differences [J]. Pattern Recognition, 2001, 34 (3): 727-739.
[76]  Liu L, Fieguth P. Texture classification from random features [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34(3): 574-586.
[77]  Liu L, Fieguth P, Kuang G Y, et al. Sorted random projections for robust texture classification[C]// Proceedings of IEEE International Conference on Computer Vision. Washington DC, USA: IEEE, 2011: 391-398.
[78]  Leung T, Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons [J]. International Journal of Computer Vision, 2001, 43(1): 29-44.
[79]  Zhang J, Marszalek M, Lazebnik S, et al. Local features and kernels for classification of texture and object categories: a comprehensive study [J]. International Journal of Computer Vision, 2007, 73(2): 213-238.
[80]  Crosier M, Griffin L. Using basic image features for texture classification[J]. International Journal of Computer Vision, 2010, 88(3): 447-460.
[81]  Shan C, Gritti T. Learning discriminative LBP-histogram bins for facial expression recognition [C]//Proceedings of British Machine Vision Conference. Leeds, UK: BMVC, 2008.
[82]  Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE Computer Society, 2001: 511-518.
[83]  Chen J, Shan S, He C, et al. WLD: a robust local image descriptor [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 (9): 1705-1720.
[84]  Huang D, Ardabilian M, Wang Y, et al. A novel geometric facial representation based on multi-scale extended local binary patterns [C]//Proceedings of the 9th IEEE International Conference on Automatic Face and Gesture Recognition and Workshops. Santa Barbara, USA: IEEE Computer Society, 2011: 1-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133