全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

加权局部二值模式的人脸特征提取

DOI: 10.11834/jig.20141211

Keywords: 纹理特征,局部二值模式,自适应加权,人脸识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的为了能够得到图像更加丰富的纹理特征,提出一种新的自适应加权局部二值模式算法。方法首先,将图像进行分块,利用新算法提取每个子块的局部二值模式的纹理直方图;然后,将各子图像的信息熵作为直方图的加权依据,对每个子块对应的直方图进行自适应加权,并将所有子块的直方图连接成最终的纹理特征。提取每个子块的局部纹理特征时的方法为:以某一像素点为中心取相邻的8个像素组成一个局部邻域,在该邻域内依据自适应设定的阈值分别比较3对水平方向和3对竖直方向像素值的大小,以此获得6位二进制码并将每位二进制码乘以相应的权重后相加,累加和即为该邻域新的局部二值模式纹理特征。结果在两大人脸数据库上进行的实验结果表明,利用本文提出的方法提取纹理特征,并结合最近邻分类法可以得到85.29%和96.50%的正确识别率。结论文中提出的自适应加权局部二值模式特征能够获取图像中更加丰富的纹理信息,因而具有较高的正确识别率,并且对于其他的物体识别也具有一定的参考价值。

References

[1]  Zhang J Y. Study on the detecting and matching technique of local invariant feature and its applications[D]. Nanjing: University of Science & Technology, 2010. [张洁玉. 图像局部不变特征提取与匹配及应用研究[D]. 南京:南京理工大学, 2010.]
[2]  Tuceryan M, Jain A K. Texture Analysis, Handbook Pattern Recognition and Computer Vision[M]. Singapore: World Scientific, 1993, 235-276.
[3]  Liu X D, Li L L.Texture image segmentation based on gray-level co-occurrence matrix and multiscale MRF[J]. Microcomputer & Its Applications, 2013, 32(13): 46-48. [刘小丹, 李陆陆. 基于灰度共生矩阵和多尺度 MRF 的纹理图像分割[J]. 微型机与应用, 2013, 32(13):46-48.]
[4]  Ding S H. Texture description using fractal analysis[D]. Dalian: Dalian University of Technology, 2011. [丁守鸿. 基于分形分析的纹理特征提取[D]. 大连:大连理工大学, 2011.]
[5]  Zhang G, Ma Z M. An approach of using Gabor wavelets for texture feature extraction[J]. Journal of Image and Graphics, 2010, 15(2): 247-254. [张刚, 马宗民. 一种采用 Gabor 小波的纹理特征提取方法[J]. 中国图象图形学报, 2010, 15(2): 247-254.][DOI:10.11834/jig.20100210]
[6]  Cheng J, Li L, Luo B, et al. High-resolution remote sensing image segmentation based on improved RIU-LBP and SRM[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 2013(1): 1-12.
[7]  Chen T Y, Zhang D, Yang Yan, et al. LBP texture features extraction in ultrasound images[J]. Journal of Wuhan University: Natural Science Edition, 2012, 58(5): 401-405. [陈廷寅,张东,杨艳,等.超声图像的LBP纹理特征提取[J]. 武汉大学学报:理学版,2012, 58(5): 401-405.]
[8]  Lee K, Lee C. Content-based image retrieval using LBP and HSV color histogram[J]. Journal of Broadcast Engineering, 2013,18(3): 372-379.
[9]  Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions [J]. Pattern Recognition, 1999, 29: 51-59.
[10]  Heng C K, Yokomitsu S, Matsumoto Y, et al. Shrink boost for selecting multi-lbp histogram features in object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Providence RI, USA: IEEE 2012: 3250-3257.
[11]  Yogesh R. Tayade, Bansode SM. An efficient face recognition and retrieval using LBP and SIFT[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2013, 2(4):1769-1773.
[12]  Zhu Q, Wang Y, LI C. Visible light texture image classification using gabor and LBP feature [J]. Journal of Computational Information Systems, 2013, 9(21): 8415-8422.
[13]  Zou B, Pan Z B, Hu S. Image retrieval method based on local projection and block LBP feature[J]. Journal of Image and Graphics, 2012, 17(6): 671-677. [邹彬, 潘志斌, 胡森. 基于局部投影与块 LBP 特征的图像检索[J]. 中国图象图形学报, 2012, 17(6): 671-677.][DOI: 10.11834/jig.20120609]
[14]  Zhang Y, Wu Y, Liu Q. An image automatic matching method based on FAST corner and LBP descriptor[J]. Journal of Information & Computational Science, 2013(10): 2703-2710.
[15]  Guo Z H, Zhang L, Zhang D, et al. Rotation invariant texture classification using adaptive LBP with directional statistical features[C]//Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010: 285-288.
[16]  Guo Z H, Zhang L, Zhang D. Rotation invariant texture classification using LBP variance (LBPV) with global matching[J]. Pattern Recognition, 2010, 43(3): 706-719.
[17]  Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[M]//Analysis and Modeling of Faces and Gestures. Berlin Heidelberg: Springer 2007:168-182.
[18]  Zhu Q D, Liu X, Cai C T. Image local invariant feature description with high robustness and uniqueness[J]. Systems Engineering and Electronics, 2013, 35(9): 1983-1988. [朱齐丹, 刘学, 蔡成涛. 高鲁棒性和独特性的图像局部不变特征描述[J]. 系统工程与电子技术, 2013, 35(9): 1983-1988.]
[19]  Liu W F, Li S J, Wang Y J. Facial expression analysis using LBP features[J]. Computer Engineering and Applications, 2011, 47(2): 149-152. [刘伟锋, 李树娟, 王延江. 人脸表情的LBP特征分析[J]. 计算机工程与应用, 2011, 47(2): 149-152.]
[20]  Jiang R, Xu J L, Zhang A P. Facial expression recognition based on improve LBP[J]. Journal of Zhejiang Sci-Tech University, 2013, 30(4): 546-549. [姜锐, 许建龙, 张爱朋. 基于改进 LBP 的人脸表情识别[J]. 浙江理工大学学报, 2013, 30(4): 546-549.]
[21]  更多...
[22]  Heikkil? M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.
[23]  Li H L, Guo L H, Li X M, et al. Iris recognition based on SCCS-LBP[J]. Optics and Precision Engineering, 2013, 21(8): 2129-2136. [李欢利, 郭立红, 李小明, 等. 基于统计特征中心对称局部二值模式的虹膜识别[J]. 光学精密工程, 2013, 21(8): 2129-2136.]
[24]  Liu D, Hu Y J, Liu B B. Copy-paste forgery detection using SIFT key-points and CS-LBP descriptor[J]. Journal of Hefei University of Technology: Natural Science, 2012,35(3):325-330. [刘丹, 胡永健, 刘?贝. 联合SIFT特征点和CS-LBP特征描述子的复制粘贴篡改检测[J]. 合肥工业大学学报:自然科学版, 2012,35(3):325-330.]
[25]  Liu Y, Huang B, Sun H J, et al. Fast image segmentation algorithm combining CS-LBP texture features[J]. Computer Science, 2013,40(5):300-302. [刘毅, 黄兵, 孙怀江,等.结合CS-LBP纹理特征的快速图割算法[J]. 计算机科学, 2013,40(5): 300-302.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133