全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于压缩感知的SAR图像鲁棒编码传输

DOI: 10.11834/jig.20141113

Keywords: 压缩感知,合成孔径雷达,鲁棒传输,方向提升小波变换(DLWT),稀疏滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的尽管传统的联合信源信道编码方案可以获得高效的压缩性能,但当信道恶化超过信道编码的纠错能力时会导致解码端重构性能的急剧下降;为此利用压缩感知的民主性提出一种鲁棒的SAR图像编码传输方案,且采用了一系列方法提高该方案的率失真性能。方法考虑到SAR图像丰富的边缘信息,采用具有更强方向表示能力的方向提升小波变换(DLWT)对SAR图像进行稀疏表示,且为消除压缩感知中恢复非稀疏信号时存在的混叠效应,采用了稀疏滤波方法保证大系数的精确恢复,在解码端采用了高效的Bayesian重建算法获得图像的高性能重建。结果在同等码率下,与传统的联合信源信道编码方案CCSDS-RS相比,本文方案可以实现更加鲁棒的编码传输,当丢包率达到0.05时,本文方案DSFB-CS获得的重建性能明显要高于CCSDS-RS;与基于Bayesian重建算法TSW-CS的传统方案相比,本文方案可提高峰值信噪比(PSNR)3.9dB。结论本文方案DSFB-CS实现了SAR图像的鲁棒传输,随着丢包率的上升,DSFB-CS获得的重建性能缓慢下降,保证了面对不稳定信道时,解码端可以获得相对稳定的重构图像。

References

[1]  Wu Y R. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142.[ 吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135-142.]
[2]  Bonneau R J, Abousleman G P. Target-aided fixed-quality-of-service compression of SAR imagery for transmission over noisy wireless channels[C]//Proceedings of International Conference on Image Processing. New York: IEEE, 2002, 1: 557-560.
[3]  Karvonen J, Simila M. A wavelet transform coder supporting browsing and transmission of sea ice SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 2464-2485.
[4]  Gabay A, Kieffer M, Duhamel P. Joint source-channel coding using real BCH codes for robust image transmission[J]. IEEE Transactions on Image Processing, 2007, 16(6): 1568-1583.
[5]  Xue G D, Hao C X, Zhang W B, et al. A novel error resilient joint source-channel coding scheme for image transmission over error prone channels[C]//Proceedings of International Conference on Broadband Network & Multimedia Technology. Beijing: IEEE, 2009:529-534.
[6]  Deng C W, Lin W S, Lee B, et al. Robust image coding based upon compressive sensing[J]. IEEE Transactions on Multimedia, 2012, 14(2): 278-290.
[7]  Do T T, Yi C, Nguyen D T, et al. Robust video transmission using layered compressed sensing[C]//Proceedings of IEEE International Workshop on Multimedia Signal Processing. Rio DeJaneiro: IEEE, 2009:1-4.
[8]  Wang L J, Wu X L, Shi G M. Multiple description video coding against both erasure and bit errors by compressive sensing[C]//Proceedings of IEEE Visual Communications and Image Processing. Tainan, China: IEEE, 2011: 1-4.
[9]  Bhatnagar D, Budhiraja S. Image compression using DCT based compressive sensing and vector quantization[J]. International Journal of Computer Applications, 2012, 50(20): 34-38.
[10]  Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[11]  Hou X S, Yang J, Jiang G F, et al. Complex SAR image compression based on directional lifting wavelet transform with high clustering capability[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 527-538.
[12]  He L, Carin L. Exploiting structure in wavelet-based bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3488-3497.
[13]  Fernando G V, Joan S S. Extending the CCSDS recommendation for image data compression for remote sensing scenarios[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3431-3445.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133