全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小波域中双稀疏的单幅图像超分辨

DOI: 10.11834/jig.20141103

Keywords: 小波域,双稀疏,稀疏表示,超分辨

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的过去几年,基于稀疏表示的单幅图像超分辨获得了广泛的研究,提出了一种小波域中双稀疏的图像超分辨方法。方法由小波域中高频图像的稀疏性及高频图像块在空间冗余字典下表示系数的稀疏性,建立了双稀疏的超分辨模型,恢复出高分辨率图像的细节系数;然后利用小波的多尺度性及低分辨率图像可作为高分辨率图像低频系数的逼近的假设,超分辨图像由低分辨率图像的小波分解和估计的高分辨率图像的高频系数经过二层逆小波变换来重构。结果通过大量的实验发现,双稀疏的方法不仅较好地恢复了图像的局部纹理与边缘,且在噪声图像的超分辨上也获得了不错的效果。结论与现在流行的使用稀疏表示的超分辨方法相比,双稀疏的方法对噪声图像的超分辨效果更好,且计算复杂度减小。

References

[1]  Hardie R C, Barnard K J, Armstrong E E. Jiont map registration and high-resolution image estimation using a sequence of undersampled images[J]. IEEE Transactions on Image Processing, 1997, 6(12): 1621-1633.
[2]  Farsiu S, Robinson P, Elad M, et al. Fast and robust multi-frame super-resolution[J]. IEEE Transactions on Image Processing, 2001, 13(10): 1327-1344.
[3]  Shao W Z, Wei Z H. Super-resolution reconstruction based on generalized huber-MRF image modeling[J]. Journal of Software, 2007, 18(10): 2434-2444.[邵文泽, 韦志辉. 基于广义Huber-MRF图像建模的超分辨率复原算法[J]. 软件学报, 2007, 18(10): 2434-2444.]
[4]  Huang Q L, Liu S Q, Sun J H, et al. Single image super-resolution combined with learning algorithm[J]. Computer Engineering and Application, 2013, 49(23):186-190.[黄全亮, 刘水清, 孙金海, 等. 融合学习算法的单帧图像超分辨率复原[J]. 计算机工程与应用,2013, 49(23):186-190.]
[5]  He H Y, Li J H, Luo X N. Single image super-resolution using gaussian mixture model[C]//Proceedings of International Conference on Pattern Recognition. Tsukuba, Japan: IEEE, 2012: 1916-1919.
[6]  Ni K S, Nguyen T Q. Image superresolution using support vector regression[J]. IEEE Transactions on Image Processing, 2007, 16(6): 1596-1610.
[7]  Pu J, Zhang J P. Super-resolution through dictionary learning and sparse representation[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(3): 335-340.[浦剑, 张军平. 基于字典学习和稀疏表示的超分辨方法[J]. 模式识别与人工智能, 2010, 23(3): 335-340.]
[8]  Yang J C, Wright J, Huang T, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010,19(20): 2861-2873.
[9]  Zeyde R, Elad M, Protter M. On single image scaleup using sparse representation[C]//Proceedings of International Conference on Curves and Surfaces. Avignon, France: Springer, 2011: 132-146.
[10]  Dong W S, Zhang L, Shi G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857.
[11]  Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9):1532-1546.
[12]  Kim C, Choi K, Hwang K, et al. Learning-based super-resolution using a multi-resolution wavelet approach[C]//Proceedings of IWAIT. Korean: Korea University, 2009: 309-313.
[13]  Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 4(11): 4311-4322.
[14]  Goldstein T, Osher S. The split Bregman algorithm for L1 regularized problems[J]. SIAM Journal on Imaging Science, 2009, 2(2): 323-343.
[15]  Cai J F, Osher S, Shen Z W. Split Bregman methods and frame based image restoration[J]. SIAM Journal on Multiscale Modeling and Simulation, 2009, 8(2): 337-369.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133