全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多相主动轮廓模型的眼底图像杯盘分割

DOI: 10.11834/jig.20141108

Keywords: 眼底图像,杯盘分割,C-V模型,椭圆形约束多相主动轮廓模型,多相水平集函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的视盘及视杯的检测对于分析眼底图像和视网膜视神经疾病计算机辅助诊断来说十分重要,利用医学眼底图像中视盘和视杯呈现椭圆形状这一特征,提出了椭圆约束下的多相主动轮廓模型,实现视盘视杯的同时精确分割。方法该算法根据视盘视杯在灰度图像中具有不同的区域亮度,建立多相主动轮廓模型,然后将椭圆形约束内嵌于该模型中。通过对该模型的能量泛函进行求解,得到椭圆参数的演化方程。分割时首先设定两条椭圆形初始曲线,根据演化方程,驱动曲线分别向视盘和视杯方向进行移动。当轮廓线到达视盘、视杯边缘时,曲线停止演化。结果在不同医学眼底图像中对算法进行验证,对算法抗噪性、不同初始曲线选取等进行了实验,并与多种算法进行了对比。实验结果表明,本文模型能够同时分割出视盘及视杯,与其他模型的分割结果相比,本文算法的分割结果更加准确。结论本文算法可以精确分割医学眼底图像中的视盘和视杯,该算法不需要预处理,具有较强的鲁棒性和抗噪性。

References

[1]  Lu S, Lim J H. Automatic optic disc detection from retinal images by a line operator[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(1): 88-94.
[2]  Yu H, Barriga E S, Agurto C, et al. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 644-657.
[3]  Bock R, Meier J, Nyúl L G, et al. Glaucoma risk index: automated glaucoma detection from color fundus images[J]. Medical image analysis, 2010, 14(3): 471-481.
[4]  Joshi G, Sivaswamy J, Krishnadas S R. Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment[J]. IEEE Transactions on Medical Imaging, 2011, 30(6): 1192-1205.
[5]  Wang Y L, Shen J X, Liao W H. Automatic fundus images mosaic based on SIFT feature[J].Journal of Image and Graphics, 2011,16(4):654-659.[王玉亮,沈建新,廖文和.基于SIFT特征的眼底图像自动拼接[J].中国图象图形学报,2011,16(4):654-659.][DOI: 10.11834/jig.20110414]
[6]  Cheng J, Liu J, Xu Y, et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening[J]. IEEE Transactions on Medical Imaging, 2013, 32(6): 1019-1032.
[7]  Yin F, Liu J, Wong D W K, et al. Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis[C]//The 25th International Symposium on Computer-Based Medical Systems. New York: IEEE, 2012: 1-6.
[8]  Fondón I, Nú?ez F, Tirado M, et al. Automatic cup-to-disc ratio estimation using active contours and color clustering in fundus images for glaucoma diagnosis[M]//Image Analysis and Recognition. Berlin Heidelberg: Springer, 2012: 390-399.
[9]  Tan N M, Liu J, Wong D W K, et al. Mixture model-based approach for optic cup segmentation[C]//Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2010: 4817-4820.
[10]  Liu G C, Wang Y N, Quan H M. Reconstruction segmentation and measurement of the color optic cup and disk image of optic nerve heads based on hierarchical Mumford-Shah model[J]. Chinese Journal of Biomedical Engineering, 2007,26(5):700-712.[刘国才,王耀南,全慧敏. 基于多层Mumford-Shah向量模型的彩色视乳头图像杯盘重建、分割与度量[J].中国生物医学工程学报,2007,26(5):700-712.]
[11]  Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
[12]  Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
[13]  Luo H G, Zhu L M, Ding H. A survey on image segmentation using active contour and level set method[J]. Journal of Image and Graphics, 2006, 11(3):301-309.[罗红根,朱利民,丁汉. 基于主动轮廓模型和水平集方法的图像分割技术[J].中国图象图形学报, 2006,11(3):301-309.][DOI: 10.11834/jig.20060349]
[14]  Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685.
[15]  Negri M, Paolini M. Numerical minimization of the Mumford-Shah functional[J]. Calcolo, 2001, 38(2): 67-84.
[16]  Bourdin B, Chambolle A. Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[J]. Numerische Mathematik, 2000, 85(4): 609-646.
[17]  Gobbino M. Finite difference approximation of the Mumford-Shah functional[J]. Communications on Pure and Applied Mathematics, 1998, 51(2): 197-228.
[18]  Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
[19]  Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. International Journal of Computer Vision, 2002, 50(3): 271-293.
[20]  Tang Y, Li X, von Freyberg A, et al. Automatic segmentation of the papilla in a fundus image based on the CV model and a shape restraint[C]//Proceedings of the 18th International Conference on Pattern Recognition. New York: IEEE, 2006, 1: 183-186.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133