全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

灰度级信息的目标边界精确周长估算

DOI: 10.11834/jig.20141006

Keywords: 周长估计,边界跟踪,内外边界,灰度级信息,模糊边界,不连续边界

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对图像目标边界不连续或具有模糊性导致的目标周长无法精确估算这一问题,结合边界跟踪,提出一种基于灰度级信息的目标边界精确周长估算方法。方法该方法利用目标边界的灰度级信息,同时结合边界跟踪得到的内外边界来估计目标图像的边界周长,从而提高边界周长估计的精确性和鲁棒性。为了获得目标物体真实周长,实验采用人工合成图像。结果实验应用所提方法和3种传统周长估算方法分别计算合成目标对象的周长,并与真实周长比较。为了验证所提方法的有效性和鲁棒性,实验中对目标对象的边界进行不同程度的加厚模糊化;并在边界加入噪声,使边界不连续。当边界变得复杂时,本文所提方法的优势得到极大体现。结论实验结果表明,在边界模糊和边界不连续的情况下,本文所提的算法具有更好的适应性和稳定性。

References

[1]  Kimura K, Kikuchi S, Yamasaki S. Accurate root length measurement by image analysis [J]. Plant and Soil, 1999, 216(1-2): 117-127.
[2]  Cao L P. Machine recognition of citrus variety based on the fractal dimensions of perime-ter-area [J]. Nuclear Science and Techniques, 2010, 26(2): 351-355. [曹乐平. 基于周长面积分形维数的柑橘品种机器识别 [J]. 农业工程学报, 2010, 26(2): 351-355.]
[3]  Coeurjolly D, Klette R. A comparative evaluation of length estimators of digital curves [J]. IEEE Transactions on, Pattern Analysis and Machine Intelligence, 2004, 26(2): 252-258.
[4]  Dorst L, Smeulders A W M. Length estimators for digitized contours [J]. Computer Vision, Graphics, and Image Processing, 1987, 40(3): 311-333.
[5]  Wang K P, You Z S, Gao Y. Accurate perimeter estimation of digitized planar object [J]. Journal of Image and Graphics,1997, 2(2-3): 165-170. [王开平, 游志胜, 高阳. 二维数字化目标周长的精确估计 [J]. 中国图象图形学报, 1997, 2(2-3): 165-170.][DOI;10.11834/jig.19970319]
[6]  Wu X P, Kong M, Zhang D L. A new method for calculating area and perimeter of closed region [J]. Data Acquisition and Processing, 1999, 14(2): 244-246.[吴小培, 孔敏, 张德龙. 一种计算封闭区域周长和面积的新方法[J]. 数据采集与处理, 1999, 14(2): 244-246.]
[7]  Allili M, Ziou D. Topological feature extraction in binary images[C]// Symposium on Signal Processing and its Applications, Sixth International. Kuala Lumpur: IEEE, 2001, 2: 651-654.
[8]  Kulpa Z. Area and perimeter measurement of blobs in discrete binary pictures [J]. Computer Graphics and Image Processing, 1977, 6(5): 434-451.
[9]  Kiryati N, Bruckstein A. Gray levels can improve the performance of binary image digitizers [J]. CVGIP: Graphical Models and Image Processing, 1991, 53(1): 31-39.
[10]  Eberly D, Lancaster J, Alyassin A. On gray scale image measurements: II. Surface area and volume [J]. CVGIP: Graphical models and image processing, 1991, 53(6): 550-562.
[11]  Sladoje N, Lindblad J. High-precision boundary length estimation by utilizing gray-level information [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 357-363.
[12]  Sladoje N, Lindblad J. Pixel coverage segmentation for improved feature estimation [M]//Image Analysis and Processing-ICIAP 2009. Berlin Heidelberg: Springer, 2009: 929-938.
[13]  Lindblad J, Sladoje N. Coverage segmentation based on linear unmixing and minimization of perimeter and boundary thickness [J]. Pattern Recognition Letters, 2012, 33(6): 728-738.
[14]  Klette R, Kovalevsky V V, Yip B. Length estimation of digital curves[C]//SPIE\'s International Symposium on Optical Science, Engineering, and Instrumentation. Denver, Co: International Society for Optics and Photonics, 1999: 117-128.
[15]  Sladoje N, Lindblad J. Perimeter estimation based on grey level object representation [R]. Uppsala, Sweden: Centre for Image Analysis, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133