全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自适应梯度重建分水岭分割算法

DOI: 10.11834/jig.20141004

Keywords: PCA降维,形态学重建,彩色图像分割,分水岭

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对灰度分水岭算法存在过分割且难以直接应用到彩色图像分割的问题,提出一种自适应梯度重建分水岭分割算法。方法该方法首先利用PCA技术对彩色图像降维,然后计算降维后的梯度图像,并采用自适应重建算法修正梯度图像,最后对优化后的梯度图像应用分水岭变换实现对彩色图像的正确分割。结果采用融合了颜色距离、均方差和区域信息的性能指标和分割区域数对分割效果进行评估,对不同类型的彩色图像进行分割实验,本文算法在正确分割图像的同时获得了较高的性能指标。与现有的分水岭分割算法相比,提出的方法能有效剔除图像中的伪极小值,减少图像中的极小值数目,从而解决了过分割问题,有效提升了分割效果。结论本文算法具有较好的适用性和较高的鲁棒性。

References

[1]  Vincent L, Soille P. Watershed in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-589.
[2]  Levner I, Zhang H. Classification-driven watershed segmentation [J]. IEEE Transactions on Image Processing, 2007,16(5): 1437-1445.
[3]  Maragos P, Vachier C. Overview of adaptive morphology: trends and perspectives [C] // Proceedings of the 16th IEEE International Conference on Image Processing. Cairo: IEEE, 2009: 2241-2244.
[4]  Haniza Y, Hamazah A. Gradient based adaptive thresholding [J]. Journal of Visual Commanication and Image Representation, 2013, 24(7): 926-936.
[5]  Pinoli J C, Debayle J. General adaptive neighborhood mathematical morphology [C] //Proceedings of the 16th IEEE International Conference on Image Processing. Cairo: IEEE, 2009: 2249-2252.
[6]  Nidhal B, Dan S. Adaptive mathematical morphology: a unified representation theory [C] // Proceedings of the 16th IEEE International Conference on Image Processing. Cairo: IEEE, 2009: 2265-2268.
[7]  Richard B. A locally constrained watershed transform [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1063-1074.
[8]  Leticia R, Franklin C F, Roberto A L. A tensorial framework for color images [J]. Pattern Recognition Letters, 2010, 31(4): 277-296.
[9]  Maragos P, Vachier C. A PDE formulation for viscous morphological operators with extensions to intensity adaptive operators [C]// Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, CA: IEEE, 2008: 2200-2203.
[10]  Claudio R J. Unsupervised multiscale segmentation of color images [J]. Pattern Recognition Letters, 2007, 28(4): 523-533.
[11]  Cokelaer F, Dalla M.Hierarchical watershed segmentation based on gradient image simplification [C] //SPIE Image and Signal Processing for Remote Sensing. Edinburgh; International Society for Optics and Photonics, 2012, 8537: 1-6.
[12]  Tarabalka Y, Chanussot J, Benediksson J A. Segmentation and classification of hyperspectral data using watershed [C] // IEEE International Geoscience and Remote Sensing Symposium. Boston, MA: IEEE, 2008, 3: 652-655.
[13]  Yang D, Gould S, Hutter M. A noise tolerant watershed transformation with viscous force for seeded image segmentation [M]//Computer Vision-ACCV, 2012.Berlin Heidelberg:Springer, 2013: 775-789.
[14]  Angulo J, Santiago V F. Multisclae stochastic watershed for unsupervised hyperspectral image segmentation [C] // IEEE International Geoscience and Remote Sensing Symposium. Cope Town: IEEE, 2009, 3: 93-96.
[15]  Angulo J, Santiago V F. Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed [C] //SPIE Defense, Security and Sensing. Orlando, Florida: International Society for Optics and Photonics, 2010, 7695: 1-12.
[16]  Khang S T, Nor A M I. Color image segmentation using histogram thresholding-Fuzzy C-means hybrid approach [J]. IEEE Transactions on Pattern Recognition, 2011, 44 (10): 1-15.
[17]  Lezoray O, Charrier C. Color image segmentation using morphological clustering and fusion with automatic scale selection [J]. Pattern Recognition Letters, 2009, 30(4): 297-406.
[18]  Wang X P, Dang J W, Wang Y P. Parameterized morphological watershed segmentation [J]. Journal of the China Railway Society, 2013, 35(1): 66-70.[王小鹏, 党建武, 王阳萍. 一种参数化的形态学分水岭图像分割方法[J]. 铁道学报, 2013, 35(1): 66-70.]
[19]  Liu Y, Yang H.Multiresolution color image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(7): 689-700.
[20]  Borsotti M, Gampadelli P, Schettini R. Quantitative evaluation of color image segmentation results [J].Pattern Recognition Letters, 1998, 19(8): 741-747.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133