Vincent L, Soille P. Watershed in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-589.
[2]
Levner I, Zhang H. Classification-driven watershed segmentation [J]. IEEE Transactions on Image Processing, 2007,16(5): 1437-1445.
[3]
Maragos P, Vachier C. Overview of adaptive morphology: trends and perspectives [C] // Proceedings of the 16th IEEE International Conference on Image Processing. Cairo: IEEE, 2009: 2241-2244.
[4]
Haniza Y, Hamazah A. Gradient based adaptive thresholding [J]. Journal of Visual Commanication and Image Representation, 2013, 24(7): 926-936.
[5]
Pinoli J C, Debayle J. General adaptive neighborhood mathematical morphology [C] //Proceedings of the 16th IEEE International Conference on Image Processing. Cairo: IEEE, 2009: 2249-2252.
[6]
Nidhal B, Dan S. Adaptive mathematical morphology: a unified representation theory [C] // Proceedings of the 16th IEEE International Conference on Image Processing. Cairo: IEEE, 2009: 2265-2268.
[7]
Richard B. A locally constrained watershed transform [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1063-1074.
[8]
Leticia R, Franklin C F, Roberto A L. A tensorial framework for color images [J]. Pattern Recognition Letters, 2010, 31(4): 277-296.
[9]
Maragos P, Vachier C. A PDE formulation for viscous morphological operators with extensions to intensity adaptive operators [C]// Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, CA: IEEE, 2008: 2200-2203.
[10]
Claudio R J. Unsupervised multiscale segmentation of color images [J]. Pattern Recognition Letters, 2007, 28(4): 523-533.
[11]
Cokelaer F, Dalla M.Hierarchical watershed segmentation based on gradient image simplification [C] //SPIE Image and Signal Processing for Remote Sensing. Edinburgh; International Society for Optics and Photonics, 2012, 8537: 1-6.
[12]
Tarabalka Y, Chanussot J, Benediksson J A. Segmentation and classification of hyperspectral data using watershed [C] // IEEE International Geoscience and Remote Sensing Symposium. Boston, MA: IEEE, 2008, 3: 652-655.
[13]
Yang D, Gould S, Hutter M. A noise tolerant watershed transformation with viscous force for seeded image segmentation [M]//Computer Vision-ACCV, 2012.Berlin Heidelberg:Springer, 2013: 775-789.
[14]
Angulo J, Santiago V F. Multisclae stochastic watershed for unsupervised hyperspectral image segmentation [C] // IEEE International Geoscience and Remote Sensing Symposium. Cope Town: IEEE, 2009, 3: 93-96.
[15]
Angulo J, Santiago V F. Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed [C] //SPIE Defense, Security and Sensing. Orlando, Florida: International Society for Optics and Photonics, 2010, 7695: 1-12.
[16]
Khang S T, Nor A M I. Color image segmentation using histogram thresholding-Fuzzy C-means hybrid approach [J]. IEEE Transactions on Pattern Recognition, 2011, 44 (10): 1-15.
[17]
Lezoray O, Charrier C. Color image segmentation using morphological clustering and fusion with automatic scale selection [J]. Pattern Recognition Letters, 2009, 30(4): 297-406.
[18]
Wang X P, Dang J W, Wang Y P. Parameterized morphological watershed segmentation [J]. Journal of the China Railway Society, 2013, 35(1): 66-70.[王小鹏, 党建武, 王阳萍. 一种参数化的形态学分水岭图像分割方法[J]. 铁道学报, 2013, 35(1): 66-70.]
[19]
Liu Y, Yang H.Multiresolution color image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(7): 689-700.
[20]
Borsotti M, Gampadelli P, Schettini R. Quantitative evaluation of color image segmentation results [J].Pattern Recognition Letters, 1998, 19(8): 741-747.