全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向瓦当文字识别的改进水平集骨架提取

DOI: 10.11834/jig.20140909

Keywords: 汉代瓦当,文物保护,骨架线,水平集,梯度矢量流场

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的瓦当是珍贵的历史文化遗产。为了进行瓦当的数字化保护和瓦当文字的自动识别,针对瓦当图像高磨损、高噪声和拓扑复杂的特点,提出基于梯度矢量流场改进的levelset骨架提取算法。方法算法在传统levelset骨架算法的基础上对中间函数进行改进,引入基于修正梯度矢量流场的中间函数替代传统的基于欧氏距离场的中间函数,主要通过两次速度不同的波传播实现,因此提高了算法的自动性和精确性。结果面对构建的标准模型,算法所提骨架线与标准骨架线的平均匹配度为98.03%,骨架均为单像素宽,居中性良好。面对各种噪声,本文算法所提骨架线与不加噪声骨架线的平均匹配度为99.15%,算法的抗噪性强。面对拓扑复杂模型,算法得到的骨架与原图像拓扑一致性、连通性、光滑性良好。结论实验结果表明,本文算法提取的骨架性能良好,算法抗噪性强,对拓扑复杂物体亦有较好结果,是一种有效的骨架提取算法。

References

[1]  Gayathri S, Sridhar V. An improved fast thinning algorithm for fingerprint image[J]. Int. J. Engineering Science and Innovative Technology, 2013, 2(1): 264-270.
[2]  Gatram R M B, Babu B R, Srikrishna A, et al. Shape matching and recognition using hybrid features from skeleton and boundary[J]. International Journal of Computers & Technology, 2013, 7(2): 558-564.
[3]  Avola D, Cinque L, Levialdi S, et al. Human body language analysis: a preliminary study based on kinect skeleton tracking[J]. Lecture Notesin Computer Science, 2013, 8158:465-473.
[4]  Hilditch C J. Comparison of thinning algorithms on a parallel processor[J]. Image and Vision Computing, 1983, 1(3): 115-132.
[5]  Pavlidis T. A thinning algorithm for discrete binary images[J]. Computer Graphics and Image Processing, 1980, 13(2): 142-157.
[6]  Dyer C R, Rosenfeld A. Thinning algorithms for gray-scale pictures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 1979, 12(1): 88-89.
[7]  Niblack C W, Gibbons P B, Capson D W. Generating skeletons and centerlines from the distance transform[J]. CVGIP: Graphical Models and Image Processing, 1992, 54(5): 420-437.
[8]  Xu C, Xiao X, Luo Y, et al. New skeleton extraction method based on distance transform[J]. Chinese Journal of Scientific Instrument, 2012, 12:2851-2856.
[9]  Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of computational physics, 1988, 79(1): 12-49.
[10]  Farag A A, Hassouna M S. Theoretical foundations of tracking monotonically advancing fronts using fast marching level set method[R]. Louisville: University of Louisville, 2005.
[11]  Hassouna M S, Farag A A. Robust centerline extraction framework using level sets [C]// Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D.C: IEEE, 2005, 1: 458-465.
[12]  Yang Z, Guo F, Dong P. Robust skeleton extraction of gray images based on level set approach[J]. Journal of Multimedia, 2013, 8(1): 24-31.
[13]  Szwedowski T D, Fialkov J, Pakdel A, et al. An optimized process flow for rapid segmentation of cortical bones of the craniofacial skeleton using the level-set method[J]. Dento Maxillo Facial Radiology, 2012, 42(4): 1-6.
[14]  Luo H G, Zhu L M, Ding H. A survey on image segmentation using active contour and level set method[J]. Journal of Image and Graphics, 2006, 11(3): 301-309.[罗红根, 朱利民, 丁汉. 基于主动轮廓模型和水平集方法的图像分割技术[J]. 中国图象图形学报, 2006, 11(3): 301-309.][DOI:10.11834/jig.20060349]
[15]  Xu C, Prince J L. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing, 1998, 7(3): 359-369.
[16]  Xu C, Prince J L. Gradient vector flow: A new external force for snakes [C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 1997: 66-71.
[17]  Hassouna M S, Farag A A. On the extraction of curve skeletons using gradient vector flow [C]// Proceedings of the 11th IEEE International Conference on Computer Vision. IEEE, 2007: 1-8.
[18]  ACohen L D, Kimmel R. Global minimum for active contour models: A minimal path approach[J]. International Journal of Computer Vision, 1997, 24(1): 57-78.
[19]  Bhatia H, Jadhav S, Bremer P T, et al. Edge maps: representing flow with bounded error [C]// Pacific Visualization Symposium, Homy Kong, China: IEEE, 2011: 75-82.
[20]  Shivakumara P, Phan T Q, Lu S J, et al. Gradient vector flow and grouping based method for arbitrarily-oriented scene text detection in video images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10):1729-1739.
[21]  更多...
[22]  Ren D W, Zuo W M, Zhao X F, et al. Fast gradient vector flow computation based on augmented lagrangian method[J]. Pattern Recognition Letters, 2013, 34(2): 219-225.
[23]  Bouix S, Martin-Fernandez M, Ungar L, et al. On evaluating brain tissue classifiers without a ground truth[J]. Neuroimage, 2007, 36(4): 1207-1224.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133