Gayathri S, Sridhar V. An improved fast thinning algorithm for fingerprint image[J]. Int. J. Engineering Science and Innovative Technology, 2013, 2(1): 264-270.
[2]
Gatram R M B, Babu B R, Srikrishna A, et al. Shape matching and recognition using hybrid features from skeleton and boundary[J]. International Journal of Computers & Technology, 2013, 7(2): 558-564.
[3]
Avola D, Cinque L, Levialdi S, et al. Human body language analysis: a preliminary study based on kinect skeleton tracking[J]. Lecture Notesin Computer Science, 2013, 8158:465-473.
[4]
Hilditch C J. Comparison of thinning algorithms on a parallel processor[J]. Image and Vision Computing, 1983, 1(3): 115-132.
[5]
Pavlidis T. A thinning algorithm for discrete binary images[J]. Computer Graphics and Image Processing, 1980, 13(2): 142-157.
[6]
Dyer C R, Rosenfeld A. Thinning algorithms for gray-scale pictures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 1979, 12(1): 88-89.
[7]
Niblack C W, Gibbons P B, Capson D W. Generating skeletons and centerlines from the distance transform[J]. CVGIP: Graphical Models and Image Processing, 1992, 54(5): 420-437.
[8]
Xu C, Xiao X, Luo Y, et al. New skeleton extraction method based on distance transform[J]. Chinese Journal of Scientific Instrument, 2012, 12:2851-2856.
[9]
Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of computational physics, 1988, 79(1): 12-49.
[10]
Farag A A, Hassouna M S. Theoretical foundations of tracking monotonically advancing fronts using fast marching level set method[R]. Louisville: University of Louisville, 2005.
[11]
Hassouna M S, Farag A A. Robust centerline extraction framework using level sets [C]// Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D.C: IEEE, 2005, 1: 458-465.
[12]
Yang Z, Guo F, Dong P. Robust skeleton extraction of gray images based on level set approach[J]. Journal of Multimedia, 2013, 8(1): 24-31.
[13]
Szwedowski T D, Fialkov J, Pakdel A, et al. An optimized process flow for rapid segmentation of cortical bones of the craniofacial skeleton using the level-set method[J]. Dento Maxillo Facial Radiology, 2012, 42(4): 1-6.
[14]
Luo H G, Zhu L M, Ding H. A survey on image segmentation using active contour and level set method[J]. Journal of Image and Graphics, 2006, 11(3): 301-309.[罗红根, 朱利民, 丁汉. 基于主动轮廓模型和水平集方法的图像分割技术[J]. 中国图象图形学报, 2006, 11(3): 301-309.][DOI:10.11834/jig.20060349]
[15]
Xu C, Prince J L. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing, 1998, 7(3): 359-369.
[16]
Xu C, Prince J L. Gradient vector flow: A new external force for snakes [C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 1997: 66-71.
[17]
Hassouna M S, Farag A A. On the extraction of curve skeletons using gradient vector flow [C]// Proceedings of the 11th IEEE International Conference on Computer Vision. IEEE, 2007: 1-8.
[18]
ACohen L D, Kimmel R. Global minimum for active contour models: A minimal path approach[J]. International Journal of Computer Vision, 1997, 24(1): 57-78.
[19]
Bhatia H, Jadhav S, Bremer P T, et al. Edge maps: representing flow with bounded error [C]// Pacific Visualization Symposium, Homy Kong, China: IEEE, 2011: 75-82.
[20]
Shivakumara P, Phan T Q, Lu S J, et al. Gradient vector flow and grouping based method for arbitrarily-oriented scene text detection in video images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10):1729-1739.
[21]
更多...
[22]
Ren D W, Zuo W M, Zhao X F, et al. Fast gradient vector flow computation based on augmented lagrangian method[J]. Pattern Recognition Letters, 2013, 34(2): 219-225.
[23]
Bouix S, Martin-Fernandez M, Ungar L, et al. On evaluating brain tissue classifiers without a ground truth[J]. Neuroimage, 2007, 36(4): 1207-1224.