全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分块策略实现图像椒盐噪声密度估计

DOI: 10.11834/jig.20140905

Keywords: 椒盐噪声,密度估计,中值滤波,直方图

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的椒盐噪声是造成图像污染的常见因素之一,椒盐噪声密度的估计对椒盐去噪过程中滤波窗口大小的选择具有指导作用。为此提出了一种基于分块策略的椒盐噪声密度估计算法。方法首先对图像按行列等分后形成多个图像子块,统计每个子块中灰度为0或255的像素点个数并排序,然后根据排序后个数差分值函数特征对子块进行筛选,最后将所有候选子块噪声密度估计值的中值作为对整幅图像噪声密度的估计。结果为验证算法的有效性,选取了两组不同类型的图像进行仿真,与现有椒盐噪声密度估计算法对比噪声密度估计结果。仿真实验结果表明,当图像自身包含较多灰度为0或255的像素点时,本文算法的噪声密度估计精度优于现有各种算法,标准差比现有算法小近一个数量级。当图像自身不包含灰度为0或255的像素点时,本文算法也能达到现有算法中最优的估计效果。结论本文算法不仅能准确估计不同强度下的噪声密度,而且适用于自身包含灰度为0或255的像素点多的椒盐噪声图像。

References

[1]  Li Z Y, Tang K Z, Hu J M, et al. Image salt & pepper noise removing based on directional weighted mean filter[J]. Journal of Image and Graphics, 2013, 18(11):1407-1415. [李佐勇, 汤可宗, 胡锦美, 等. 椒盐图像的方向加权均值滤波算法[J]. 中国图象图形学报, 2013, 18(11): 1407-1415.][DOI:10.11834/jig.20131103]
[2]  Chan R H, Ho C W, Nikolova M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1479-1485.
[3]  Wang Z, Zhang D. Progressive switching median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Transactions on Circu its and Systems II: Analog and Digital Signal Processing, 1999, 46(1): 78-80.
[4]  Kong Y Q, Pan Z G. Salt and pepper noise filtering algorithm based on local border gray-scale differences[J]. Journal of Image and Graphics, 2013, 18(3): 249-256. [孔勇奇, 潘志庚. 沿边局部灰度差分椒盐噪声滤波[J]. 中国图象图形学报, 2013, 18(3): 249-256.][DOI: 10.11834/jig.20130301]
[5]  Xu G L, Wang X T, Xu X G, et al. Adaptive removal of salt-pepper noises through fast noise ratio estimation[J]. Opto-Electronic Engineering, 2005, 32(12): 34-38. [徐冠雷, 王孝通, 徐晓刚, 等. 噪声概率快速估计的自适应椒盐噪声消除算法[J]. 光电工程, 2005, 32(12): 34-38.]
[6]  Wang L C, Wang J, Tang J M, et al. A median filter based on noise intensity estimation[J]. Journal of Lanzhou Jiaotong University, 2008, 27(6): 112-114. [王履程, 王静, 谭筠梅, 等. 基于噪声强度估计的中值滤波[J]. 兰州交通大学学报, 2008, 27(6): 112-114.]
[7]  Zhang X, Xiong Y. Impulse noise removal using directional difference based noise detector and adaptive weighted mean filter[J]. Signal Processing Letters, IEEE, 2009, 16(4): 295-298.
[8]  Duan F, Zhang Y J. A highly effective impulse noise detection algorithm for switching median filters[J]. Signal Processing Letters, IEEE, 2010, 17(7): 647-650.
[9]  Zhang Q, Liang D Q, Fan X, et al. Idetifying of noise types and estimating of noise level for a noisy image in the wavelet domain[J]. J. Infrared Millim. Waves, 2004, 23(4): 281-285. [张旗, 梁德群, 樊鑫, 等. 基于小波域的图像噪声类型识别与估计[J]. 红外与毫米波学报, 2004, 23(4): 281-285.]
[10]  Cao Z H, Li Y J, Zhang K. Estimation of salt & pepper noise on the magnitude spectrum[J]. Infrared Technology, 2006, 28(9): 549-551. [曹占辉, 李言俊, 张科. 基于幅度谱的椒盐噪声估计[J]. 红外技术, 2006, 28(9): 549-551.]
[11]  Li T Y, Wang M H, Lin T, et al. Estimation of salt-pepper noise in images in wavelet domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2): 239-243. [李天翼, 王明辉, 林涛, 等. 基于小波域的图像椒盐噪声密度估计[J]. 北京航空航天大学学报, 2012, 38(2): 239-243.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133