全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

波段排序的高光谱影像3维混合树编码方法

DOI: 10.11834/jig.20140815

Keywords: 高光谱影像编码,谱间相关性,波段排序,汉密尔顿回路,3维小波变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的高光谱影像压缩的关键技术是对空间维和光谱维的去相关性。根据高光谱影像数据结构的特点,如何有效去除其空间相关性与谱间相关性是高光谱影像压缩中至关重要的问题。对高光谱影像进行编码时,3维小波变换是极为有效的去除冗余的方法。因此提出了一种通过波段排序并结合3维混合树型结构对高光谱影像3维小波变换系数进行编码的算法。方法首先,将高光谱影像按照自然波段顺序进行波段分组,并对每组影像进行相邻影像的谱间相关性统计;其次,对相关性较弱的波段组,建立以影像波段序号为顶点、影像相关性系数为边的完全图,对这个完全图求其最大汉密尔顿回路。按照求得的最大汉密尔顿回路顺序对该波段组进行重新排序,从而提高波段组的谱间相关性;在此基础上,对重新排序后的波段组进行3维小波变换,并通过3维混合树结构对3维小波变换系数进行零树编码。结果通过对大量AVIRIS型高光谱影像数据的仿真实验,验证了本文方法的有效性。对相关性较低的波段组,加入排序算法后,其解码影像与未排序时比,峰值信噪比有了一定的提高。通过实验统计,算法平均用时2.7579s。结论由于采用了对弱相关性波段组的重新排序机制,使得基于混合树结构的3维零树编码出现了更多有效的零树,在一定程度上提高了编码效率。通过实验统计算法用时,表明该方法以较小的时间代价获得了解码效果的提升。

References

[1]  Tong Q X,Zhang B,Zheng L F.Hyperspectral Remote Sensing [M].Beijing:Higher Education Press,2006:40-44.[童庆禧,张兵,郑兰芬.高光谱遥感[M].北京:高等教育出版社,2006:40-44.]
[2]  Luo J S,Zhou M,Sun L.Data Compression of Hyperspectral Remote Sensing Image [M].Beijing:National Defense Industry Press,2011:1-19.[罗建书,周敏,孙蕾.高光谱图像数据压缩[M]. 北京:国防工业出版社,2011:1-19.]
[3]  Zhang X L,Shen L S.Research advances on lossless compression of hyperspectral image[J]. Measurement & Control Technology,2004,23(5):23-27.[张晓玲,沈兰荪.高光谱图像的无损压缩研究进展[J]. 测控技术,2004,23(5):23-27.][DOI:10.3969/j.issn.1000-8829.2004.05.009]
[4]  Wang L.Research on compression algorithm of hyperspectral remote sensing image based on spectral feature[D].Changchun:Jilin University,2009.[王朗.基于光谱特征的超光谱遥感图像压缩算法研究[D].长春:吉林大学,2009.]
[5]  Shen E Q, Hollinger A B, Dutkiewicz M,et al.Effect of lossy vector quantization hyperspectral data compression on retrieval of red-edge indices[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(7):1459-1470.
[6]  Tang X, Pearlm W A, Modestino J W.Hyperspectral image compression using three-dimensional wavelet coding: a lossy-to-lossless solution [J]. Proceedings of SPIE,2003,5022:1037-1047.
[7]  Chen L,Zhang X L,Yang W S,et al.A hyperspectral image compression method based on hybrid predictive coding and transform coding [J]. Acta Aeronautica et Astronautica Sinica,2010,31(4):754-761.[陈雷,张晓林,杨维松,等.一种基于预测和变换混合设计的超光谱图像压缩方法[J]. 航空学报,2010,31(4):754-761.]
[8]  Dragotti P L,Poggi G,Ragozini A R P. Compression of multispectral images by three-dimensional SPIHT algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(1):416-428.
[9]  Huang J,Zhu R H,Li J X.Hyperspectral image coding based on three-dimensional integer wavelet transform[J]. Chinese journal of scientific instrument,2007,28(12):2274-2279.[黄菁,朱日宏,李健欣.基于三维整数小波变换的高光谱图像编码方法[J]. 仪器仪表学报,2007,28(12):2274-2279.][DOI:10.3321/j.issn:0254-3087.2007.12.032]
[10]  Said A,Pearlman W A.A new,fast,and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Trans.on Circuits Syst.Video Technol,1996,6(3):243-250.
[11]  Wan J W,Nian Y J,Su L H, et al.Applied Compression of Hyperspectral Remote Sensing Image [M].Beijing:National Defense Industry Press,2012:7-8.[万建伟,粘永健,苏令华,等.实用高光谱遥感图像压缩[M].北京:国防工业出版社,2012:7-8.]
[12]  Wang X H,Song C M.Scalable Coding of Images and Video[M]. Beijing:Science Press,2009.[王相海,宋传鸣.图像及视频可分级编码[M].北京:科学出版社,2009.]
[13]  Fu M Z,Wang X H,Song C M.Scalable video coding algorithm based on 3D hybrid tree and visual characteristics[J]. Journal on Communications ,2012,33(11):100-107.[付明哲,王相海,宋传鸣.基于3维混合树和视觉特性的视频可分级编码算法[J]. 通信学报,2012,33(11):100-107.]
[14]  Wang L G,Zhao C H.Hyperspectral Image Processing Technology[M].Beijing:National Defense Industry Press,2013.[王立国,赵春晖.高光谱图像处理技术[M].北京:国防工业出版社,2013.]
[15]  Shapiro J M.Embedded image coding using zerotree of wavelet coefficients[J]. IEEE Transactions on Signal Process,1993,41(12):3445-3462.
[16]  Hoffman R N ,Johnson D W.Application of EOF\'S to multispectral imagery data compression and noise detection for AVIRIS[J]. IEEE Transactions on Geoscience and Remote Sensing,1994,32(1):25-34.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133