全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用无参考图像内容量度优化非局部均值去噪方法的参数

DOI: 10.11834/jig.20140804

Keywords: 非局部均值,无参考图像内容量度,参数优化,衰减参数,图像去噪

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的非局部均值NLM(non-localmeans)方法是一种有效的数字图像去噪方法。然而,在实际去噪过程中,非局部均值的衰减参数通常是固定的而且无法随着图像的变化而作适应性的调整。为了使非局部均值方法更加有效,提出一种将适用于多种噪声分布的无参考图像内容量度(表示为Q)引入NLM的迭代方法,来优化固定的衰减参数。方法首先,针对普通图像的去噪,利用量度Q来测量每一次调整衰减参数后所对应的去噪结果的图像质量,凭借该迭代机制找到Q的最大值,从而获得最优的图像去噪结果;其次,将该量度用于MRI(magneticresonanceimaging)图像的去噪,利用Q来度量图像所含结构信息(如纹理和边缘),进而调整用于MRI图像去噪的无偏非局部均值法的衰减参数。结果实验结果显示,本文方法提升了去噪结果的峰值信噪比(PSNR),并且本文方法的去噪结果在视觉上看起来比用传统方法得到的结果更清晰。结论利用无参考图像内容量度Q来优化NLM方法的衰减参数,使得NLM方法能够针对不同的图像自适应地调整衰减参数以取得最优的去噪效果。实验结果表明用图像内容量度Q来优化非局部均值法的参数是有效的。

References

[1]  Liu C, Szeliski R, Kang S B, et al. Automatic estimation and removal of noise from a single image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):299-314.
[2]  Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C]//Proceedings of IEEE International Conference on Computer Vision. Bambay, India: IEEE Computer Society, 1998: 839-846.
[3]  Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Transactions on Pattern Analysis and Machines Intelligence, 1990, 12(7):629-639.
[4]  Buades A, Coll B, Morel J M. A non-local algorithm for image denoising [J]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2005, 2: 60-65.
[5]  Kervrann C, Boulanger J. Optimal spatial adaptation for patch based image denoising [J]. IEEE Transactions on Image Processing, 2006, 15(10): 2866-2878.
[6]  Deledalle C A, Duval V, Salmon J. Non-local methods with shape-adaptive patches (NLM-SAP) [J]. Journal of Mathematical Imaging and Vision, 2012, 43(2): 103-120.
[7]  Kleinschmidt O, Brox T, Cremers D. Nonlocal texture filtering with efficient tree structures and invariant patch similarity measures [C]//Proceedings of International Workshop on Local and Non-Local Approximation in Image Processing. Lausanne, Switzerland: IEEE SP/CAS Chapter in Finland, 2008: 103-113.
[8]  Zimmer S, Didas S, Weickert J. A rotationally invariant block matching strategy improving image denoising with non-local means [C] //Proceedings of International Workshop on Local and Non-Local Approximation in Image Processing. Lausanne, Switzerland: IEEE SP/CAS Chapter in Finland, 2008: 135-142.
[9]  Grewenig S, Zimmer S, Weickert J. Rotationally invariant similarity measures for nonlocal image denoising [J]. Journal of Visual Communication and Image Representation, 2011, 22(2): 117-130.
[10]  Manjón J V, Carbonell-Caballero J, Lull J J, et al. MRI denoising using non local means [J]. Medical Image Analysis, 2008, 12(4): 514-523.
[11]  Stein C. Estimation of the mean of a multivariate normal distribution [J]. The annals of Statistics, 1981, 9(6): 1135-1151.
[12]  Van De Ville D, Kocher M. SURE-based non-local means [J]. IEEE Signal Processing Letters, 2009, 16(11): 973-976.
[13]  Ramani S, Blu T, Unser M. Monte-carlo SURE: a black-box optimization of regularization parameters for general denoising algorithms [J]. IEEE Transactions on Image Processing, 2008, 17(9): 1540-1554.
[14]  Salmon J. On two parameters for denoising with non-local means [J]. IEEE Signal Processing Letters, 2010, 17(3): 269-272.
[15]  Kang B, Choi O, Kim J D, et al. Noise reduction in magnetic resonance images using adaptive non-local means filtering [J]. Electronics Letters, 2013, 49(5):324-326.
[16]  Zhu X, Milanfar P. A no-reference image content metric and its application to denoising [C] //Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010:1145-1148.
[17]  Zhu X, Milanfar P. Automatic parameter selection for denoising algorithms using a no-reference measure of image content [J]. IEEE Transactions on Image Processing, 2010, 19(12): 3116-3132.
[18]  Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
[19]  Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction [J]. IEEE Transactions on Image Processing, 2007, 16(2): 349-366.
[20]  Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133