全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合图像融合与分割的快速去雾

DOI: 10.11834/jig.20140806

Keywords: 去雾,大气散射模型,大气耗散函数,图像融合,图像分割

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对机器视觉系统在雾天条件下采集的图像存在对比度低、细节模糊的问题,提出一种结合图像融合与分割的场景复原方法。方法基于光学反射成像的物理特性以及形态学运算分别获取雾气浓度的近似估计,计算图像的局部方差并利用加权融合的方法得出准确的大气耗散函数,通过分割雾气最浓区域或者天空区域求得精确的大气光值,最后由大气散射模型计算复原图像并进行亮度和色调的调整。结果该方法可以有效避免光晕效应和天空颜色失真等不足,能快速复原场景的对比度和颜色。结论实验结果表明,该方法的场景适应能力较强,复原效果和计算速度相比于前人的方法均有不同程度的提高。

References

[1]  Fattal R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3):1-9.
[2]  He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE 2009:1956-1963.
[3]  He K M, Sun J, Tang X O. Guided image filtering[C]// Proceeding of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece:Springer, 2010:1-14.
[4]  Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image[C]// Proceedings of IEEE 12th International Conference on Computer Vision. Washington DC, USA: IEEE, 2009:2201-2208.
[5]  Yu J, Li D P, Liao Q M. Physics-based fast single image fog removal[J]. Acta Automatica Sinica, 2011, 37(2):143-149. [禹晶, 李大鹏, 廖庆敏. 基于物理模型的快速单幅图像去雾方法[J]. 自动化学报, 2011, 37(2):143-149.]
[6]  Narasimhan S G, Nayar S K. Removing weather effects from monochrome images[J]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE, 2001:186-193.
[7]  Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6):713-724.
[8]  Narasimhan S G, Nayar S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254.
[9]  Sun W, Li D J, Liu H J, et al. Fast single image fog removal based on atmospheric scattering model[J]. Optics and Precision Engineering, 2013, 21(4):1040-1046. [孙伟, 李大健, 刘宏娟, 等. 基于大气散射模型的单幅图像快速去雾[J]. 光学精密工程, 2013, 21(4):1040-1046.]
[10]  Gastal E S L, Oliveira M M. Domain transform for edge-aware image and video processing[J]. ACM TOG, 2011, 30(4):#69.
[11]  Chu H L, Li Y X, Zhou Z M, et al. Optimized fast dehazing method based on dark channel prior[J]. Acta Electronic Sinica, 2013, 41(4):791-797. [褚宏莉, 李元祥, 周则明, 等. 基于黑色通道的图像快速去雾优化算法[J]. 电子学报, 2013, 41(4):791-797.]
[12]  Jiang J G, Hou T F, Qi M B. Improved algorithm on image haze removal using dark channel prior[J]. Journal of circuits and systems, 2011, 16(2):7-12. [蒋建国, 侯天峰, 齐美彬. 改进的基于暗原色先验的图像去雾算法[J]. 电路与系统学报, 2011, 16(2):7-12.]
[13]  Shen J H. Weber\'s law and Weberized TV restoration[J]. Physica D:Nonlinear Phenomena, 2003, 175(3-4):241-251.
[14]  Hautiere N, Tarel J P, Aubert D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis and Stereology Journal, 2008, 27(2):87-95.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133