全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合色度和纹理不变性的运动阴影检测

DOI: 10.11834/jig.20140610

Keywords: 运动物体检测,运动阴影检测,色度不变性,纹理不变性,局部二值模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的在运动检测中,运动物体产生的阴影常常被错误地检测为运动物体本身,为了将阴影从检测结果中消除,提出一种色度不变性和纹理不变性相结合的运动阴影检测方法。方法首先从阴影的物理模型出发,直接在RGB颜色空间利用色度不变性来获得候选阴影区域,然后根据颜色信息对候选阴影区域进行分割,对每个子区域,利用一种基于局部二值模式的指标来度量其与对应背景区域的纹理相似程度,进而判断该子区域是否是阴影,从而得到最终的检测结果。结果在公开测试集上的实验结果表明本文方法可以有效地检测出运动阴影,相对于几种常用的阴影检测算法具有一定的优势。结论实验结果表明,在多类复杂场景中,本文方法都能有效地将运动阴影检测出来,具有较强的鲁棒性。

References

[1]  Shafer S A. Using color to separate reflection components [J]. Color Research & Applications, 1985, 10(4): 210-218.
[2]  Maxwell B, Friedhoff R, Smith C. A bi-illuminant dichromatic reflection model forunderstanding images [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE Computer Society, 2008: 1-8.
[3]  Huang J B, Chu S C. Moving cast shadow detection using physics-based features [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE Computer Society, 2009: 2310-2317.
[4]  Nadimi S, Bhanu B. Physical models for moving shadow and object detection in video [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1079-1087.
[5]  Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts, and shadows in video streams [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1337-1342.
[6]  Chen C T, Su C Y, Kao W C. An enhanced segmentation on vision-based shadow removal for vehicle detection [C]//Proceedings of International Conference on Green Circuits and Systems. Shanghai, China: IEEE Computer Society, 2010: 679-682.
[7]  Sanin A, Sanderson C, Lovell B C. Improved shadow removal for robust person tracking in surveillance scenarios [C]//Proceedings of International Conference on Pattern Recognition. Istanbul, Turkey: IEEE Computer Society, 2010: 23-26.
[8]  Xu D, Li X, Liu Z, et al. Cast shadow detection in video segmentation [J]. Pattern Recognition Letters, 2005, 26(1): 91-99.
[9]  Sanin A, Sanderson C, Lovell B C. Shadow detection: a survey and comparative evaluation of recent methods [J]. Pattern Recognition, 2012, 45(4): 1684-1695.
[10]  Stander J, Mech R, Osterm-ann J. Detection of moving cast shadows for object segmentation [J]. IEEE Transactions on Multimedia, 1999, 1(1): 65-76.
[11]  Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662.
[12]  Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
[13]  Zhang S, Yao H, Liu S. Dynamic background modeling and subtraction using spatio-temporal local binary patterns [C]//Proceedings of IEEE International Conference on Image Processing. San Diego, CA, USA: IEEE Computer Society, 2008: 1556-1559.
[14]  Prati A, Mikic I, Trivedi M, et al. Detecting moving shadows: algorithms and evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 918-923.
[15]  Martel-Brisson N, Zaccarin A. Kernel-based learning of cast shadows from a physical model of light sources and surfaces for low-level segmentation [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE Computer Society, 2008: 1-8.
[16]  Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Fort Collins, CO, USA: IEEE Computer Society, 1999: 246-252.
[17]  Hsieh J W, Hu W F, Chang C J, et al. Shadow elimination for effective moving object detection by gaussian shadow modeling [J]. Image and Vision Computing, 2003, 21(6): 505-516.
[18]  Leone A, Distante C. Shadow detection for moving objects based on texture analysis [J]. Pattern Recognition, 2007, 40(4): 1222-1233.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133