全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分布式视频编码中相关噪声分布的非参数估计

DOI: 10.11834/jig.20140604

Keywords: 分布式视频编码,变换域Wyner-Ziv,相关噪声分布,核密度估计,噪声模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对分布式视频编码系统中相关噪声(CN)分布难以准确模拟的问题,提出了一种CN的非参数估计方法。方法根据CN分布的特点,提出CN的非参数估计方法,建立了基于最优窗宽的核密度估计-均匀分布模型(KDEUDM),比较了变换域Wyner-Ziv(TDWZ)系统中CN的参数估计法和非参数估计法所建立的噪声模型对系统性能的影响。结果实验结果表明,非参数估计方法能较准确地模拟CN的分布,与参数估计法相比,用非参数估计法建立的噪声模型能使WZ帧编码在高码率下最高能节约10%的码率。结论非参数估计法是TDWZ系统中有效的相关噪声估计方法。

References

[1]  Girod B, Aaron A M, Rane S, et al. Distributed video coding[J]. Proceedings of the IEEE, 2005, 93(1): 71-83.
[2]  Chiu C C, Chien S Y, Lee C H, et al. Distributed video coding: a promising solution for distributed wireless video sensors or not?[C]//Visual Communications and Image Processing. Piscataway, NJ: IEEE, 2011: 1-4.
[3]  Kang L W, Lu C H. Distributed compressive video sensing[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2009: 1169-1172.
[4]  Baig Y, Lai E M K, Punchihewa A. Distributed video coding based on compressed sensing[C]//Proceedings of IEEE International Conference on Multimedia and Expo Workshops. Piscataway, NJ: IEEE, 2012: 325-330.
[5]  Aaron A, Rui Z,Girod B. Wyner-Ziv coding of motion video[C]//Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE, 2002,1: 240-244.
[6]  Luong H V, Huang X, Forchhammer S. Adaptive noise model for transform domain Wyner-Ziv video using clustering of DCT blocks[C]//Proceedings of the 13th IEEE International Workshop on Multimedia Signal Processing. Piscataway, NJ: IEEE, 2011: 1-6.
[7]  Brites C, Pereira F. Correlation noise modeling for efficient pixel and transform domain Wyner-Ziv video coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(9): 1177-1190.
[8]  Thomas M, Jerome G, Beatrice P P, et al. Using an exponential power model forwyner ziv video coding[C]//Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing. Piscataway, NJ: IEEE, 2010: 2338-2341.
[9]  Yin M, Cai S T, Xie Y. Wyner-Ziv video coding based on Gaussian mixture model[J]. Chinese Journal of Computers, 2012, 35(1):173-182. [尹明, 蔡述庭,谢云. 基于高斯混合模型的Wyner-Ziv视频编码[J]. 计算机学报, 2012, 35(1): 173-182.]
[10]  Hu X F, Zhu X C. A Wyner-ziv video coding method utilizing mixture correlation noise model[J]. Journal of Electronics, 2012,29(3/4): 197-203.
[11]  Huang X, Forchhammer S. Cross-band noise model refinement for transform domain Wyner-Ziv video coding[J]. Signal Processing: Image Communication, 2012, 27(1): 16-30.
[12]  Zhang X G. Pattern Recognition[M]. 3rd ed. Beijing: Tsinghua University Press, 2010. [张学工. 模式识别[M].3版. 北京: 清华大学出版社, 2010.]
[13]  Silverman B W. Density Estimation for Statistics and Data Analysis[M]. London: Chapman & Hall, 1986.
[14]  Bors A G, Nasios N. Kernel bandwidth estimation for nonparametric modeling[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1543-1555.
[15]  Kullback S, Leibler R A. On infromation and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133