全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

虹膜图像质量评价综述

DOI: 10.11834/jig.20140601

Keywords: 低图像质量虹膜识别,虹膜图像质量评价,质量测度评价,多测度融合,频谱分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的虹膜图像质量评价是虹膜识别系统中重要的模块,通过评价低质量虹膜样本的综合质量来提升虹膜识别的性能。虹膜图像质量评价在图像获取、人机交互系统、识别性能预测以及自适应虹膜识别算法设计等各模块中具有重要作用。近年来,随着虹膜识别系统不断发展,虹膜图像质量评价得到了广泛研究。方法为了使该领域的研究人员充分了解当前虹膜图像质量评价算法,本文对已有的方法进行了综述。结果总结了虹膜图像质量评价算法的发展历程、技术思路和主要方法,展望了虹膜图像质量评价算法以及以质量为导向的虹膜识别技术的发展。结论随着大数据时代的到来,大规模人群的虹膜识别将会成为热点。虹膜图像质量评价的研究对提升虹膜识别系统的处理能力具有重要意义。

References

[1]  Moorthy A K, Bovik A C.Blind image quality assessment: from natural scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350-3364.
[2]  Michele A S, Bovik A C, Christophe C. Blind image quality assessment: a natural scene statistics approach in the DCT domain[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352.
[3]  Dong W B, Sun Z N, Tan T N, et al.Quality-based dynamic threshold for iris matching[C]//Proceedings of IEEE Int\'l Conference on Image Processing. Washington DC, USA: IEEE Signal Society, 2009: 1949-1952.
[4]  Jang Y K, Kang B J, Park K R. A study on eyelid localization considering image focus for iris recognition[J]. Pattern Recognition Letters, 2008, 29(11): 1698-1704.
[5]  Dong W B, Sun Z N, Tan T N. Iris matching based on personalized weight map[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9): 1744-1757.
[6]  John D. High confidence visual recognition of persons by a text of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1148-1161.
[7]  Richard P W. Iris recognition: an emerging biometric technology[J]. Proceedings of the IEEE, 1997, 84(9): 1348-1363.
[8]  Matey J R, Naroditsky O, Hanna K, et al. Iris on the move: acquisition of images for iris recognition in less constrained environments[J]. Proceedings of the IEEE, 2006, 94(11): 1936-1947.
[9]  Craig F, Luca B, Keith H, et al. Iris Recognition at a distance[C]//Proceedings of Audio-and Video-Based Biometric Person Authentication. Berlin Heidelberg, Germany:Springer 2005, 3546, 187-200.
[10]  Narayanswamy R. Iris recognition at a distance with expanded imaging volume[J].Proceedings of SPIE, 2006, 6202: 62020G(1-12).
[11]  Dong W B, Sun Z N, Tan T N. A design of iris recognition system at a distance[C]//Proceedings of Chinese Conference on Pattern Recognition. Washington, DC, USA: IEEE, 2009, 1-5.
[12]  Hugo P, Silvio F, Ricardo S, et al. The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1529-1535.
[13]  Natalia A S, Joseph A. Performance prediction methodology for biometric systems using a large deviations approach[J]. IEEE Transactions on Signal Processing, 2004, 52(10): 3036-3045.
[14]  Johnson A, Sun J, Bobick A. Predicting large population data cumulative match characteristic performance from small population data[C]//Proceedings of Audio-and Video-Based Biometric Person Authentication. Berlin Heidelberg, Germany:Springer, 2003, 2688: 821-829.
[15]  Johnson A Y, Sun J, Bobick A. Using similarity scores from a small gallery to estimate recognition performance for larger galleries[C]//IEEE International Workshop on Analysis and Modeling of Faces and Gestures. Washington DC, USA: IEEE, 2003, 100-103.
[16]  Wang R, Bhanu B. Predicting fingerprint biometrics performance from a small gallery[J]. Pattern Recognition Letters, 2007, 28(1): 40-48.
[17]  Liu J, Sun Z N, Tan T N. Iris image deblurring based on refinement of point spread function[M]//Biometric Recognition. Berlin Heidelberg: Springer, 2012: 184-192.
[18]  Kien N, Clinton F, Sridha S, et al. Quality-driven super-resolution for less constrained iris recognition at a distance and on the move [J]. IEEE Transactions on Information Forensics and Security, 2011, 6(4): 1248-1258.
[19]  Kang B J, Park K R. Restoration of motion-blurred iris images on mobile iris recognition devices[J]. Optical Engineering, 2008, 47(11): 117-202.
[20]  Wei Z S, Sun Z N, Tan T N.Robust and fast assessment of iris image quality[C]//Proceedings of Int\'l Conference on Biometric. Berlin Heidelberg, Germany:Springer, 2006, 464-471.
[21]  Ma L, Tan T N, Wang Y H, et al. Personal identification based on iris texture analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1519-1533.
[22]  Chen J, Hu G S, Xu J. Iris image quality evaluation method based on wavelet packet decomposition[J]. J. Tsinghua Univ, 2003, 43(3): 377-380.[陈戟,胡广书,徐进.基于小波包分解的虹膜图像质量评价方法[J]. 清华大学学报:自然科学版,2003, 43(3)377-380].
[23]  Feng X H, Ding X Q, Wu Y S, et al. A quality assessment method of iris images[J]. Journal of Image and Graphic, 2005, 10(6): 731-735.[冯薪桦,丁晓青,吴佑寿,等.一种虹膜图像的质量评价算法[J].2005, 10(6): 731-735.].
[24]  Chen Y, Sarat C D, Anil K J. Localized iris image quality using 2-D wavelets[C]//Proceedings of IAPR International Conf on Biometric. Berlin Heidelberg, Germany:Springer, 2006: 373-381.
[25]  John D. How iris recognition works[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 21-30.
[26]  更多...
[27]  Zhang G H, Marcos S. Method of measuring the focus of close-up image of eyes: U.S, Patent 5,953,440. [P].1999.
[28]  Jang J, Park K P, Kim J H, et al. New focus assessment method for iris recognition systems[J]. Pattern Recognition Letters, 2008, 29: 1759-1767.
[29]  Wan J, He X F, Shi P F. An iris image quality assessment method based on laplacian of gaussian operator[C]//Proceedings of IAPR Conf on Machine Vision Applications. Washington DC, USA: IEEE, 2007.
[30]  Lu G M, Qi J Y, Liao Q M. A new scheme of iris image quality assessment[C]//Proceedings of Int\'l Conf Intelligent Information Hiding and Multimedia Signal Processing. Washington DC, USA: IEEE, 2007.
[31]  Craig B, Du Y Z.A selective feature information approach for iris image-quality measure[J]. IEEE Transactions on Information Forensics and Security, 2008, 3: 572-577.
[32]  Nathan D K, Zuo J Y, Natalia A S, et al. Estimating and fusing quality factors for iris biometric images[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2010, 40(3): 509-524.
[33]  Li X G, Sun Z N, Tan T N. Comprehensive assessment of iris image quality[C]//Proceedings of IEEE Int\'l Conferance of Image Processing. Washington DC, USA: IEEE Signal Society, 2011: 3117-3120.
[34]  Hugo P. Quality assessment of degraded iris images acquired in the visible wavelength[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(1): 82-95.
[35]  Aditya A, Stephanie S. Iris quality assessment and bi-orthogonal wavelet based encoding for recognition[J]. Pattern Recognition, 2009, 42(9): 1878-1894.
[36]  Zuo J Y, Francesco N, Natalia A S, et al. Adaptive biometric authentication using nonlinear mappings on quality measures and verification scores[C]//Proceedings of IEEE Int\'l Conf of Image Processing. Washington DC, USA: IEEE, 2010: 4077-4080.
[37]  Ye X Y, Yao P, Long F, et al. Iris Image Real-Time Pre-estimation Using Compound BP Neural Network[M]//Advances in Biometrics. Berlin, Heidelberg: Springer, 2005: 450-456.
[38]  Pan L L, Xie M. The algorithm of iris image quality evaluation[C]//Proceedings of Int\'l Conference on Communication, Circuits and Systems. Washington DC, USA: IEEE, 2007: 616-619.
[39]  Emine K, Sonia G S, Bernadette D. A new probabilistic iris quality measure for comprehensive noise detection[C]//Proceedings of Int\'l Conference on Biometrics: Theory, Applications, and Systems. Washington DC, USA: IEEE, 2007: 1-6.
[40]  Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[41]  Soumyadip R, Donald M M. An evaluation of image sampling and compression for human iris recognition[J]. IEEE Transactions on Information Forensics and Security, 2007, 2(3): 605-612.
[42]  John D. Effect of severe image compression on iris recognition performance[J]. IEEE Transactions on Information Forensics and Security, 2008, 3(1): 52-61.
[43]  Robert W I, Randy P B, Lauren R K, et al. Effects of image compression on iris recognition system performance[J]. Journal of Electronic Imaging, 2008, 17(1): 011015(1-8).
[44]  Zhu X D, Liu Y N, Ming X, et al. A quality evaluation method of iris images sequence based on wavelet coefficients in region of interest[C]//Proceedings of Int\'l Conference on Computer and Information Technology. Washington DC, USA: IEEE Computer Society, 2004: 24-27.
[45]  Ji H, Liu C Q. Motion blur identification from image gradients[C]//Proceedings of IEEE Computer Society Conference of Computer Vision and Pattern Recognition. Washington DC, USA: IEEE Computer Society, 2008: 1-8.
[46]  Michal D, Libor M, Tomas F. Blurred image restoration: a fast method of finding the motion length and angle[J]. Digital Signal Processing, 2010, 20(6): 1677-1686.
[47]  John D. New methods in iris recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(5): 1167-1175.
[48]  Zuo J Y, Natalia A S. Global and local quality measures for NIR iris video[C]//Proceedings of IEEE Computer Society Conference of Computer Vision and Pattern Recognition Workshops. Washington DC, USA: IEEE Computer Society, 2009: 120-125.
[49]  Schuckers S A C, Schmid N A, Abhyankar A, et al. On techniques for angle compensation in nonideal iris recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(5): 1176-1190.
[50]  Elias D G, Moshe E. General theory of remote gaze estimation using the pupil center and corneal reflections[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(6): 1124-1133.
[51]  Hugo P. Iris recognition: on the segmentation of degraded images acquired in the visible wavelength[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1502-1516.
[52]  Tan C W, Ajay K. Unified framework for automated iris segmentation using distantly acquired face images[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4068-4079.
[53]  Li Y H, Marios S. An automatic iris occlusion estimation method based on high dimensional density estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 784-796.
[54]  Li H Q, Sun Z N, Tan T N. Robust iris segmentation based on learned boundary detectors[C]//Proceedings of IAPR International Conference on Biometrics. Washington DC, USA: IEEE, 2012: 317-322.
[55]  Zuo J Y, Schmid N A. An automatic algorithm for evaluating the precision of iris segmentation[C]//Proceedings of IEEE Int\'l Conference on Biometrics: Theory, Applications and Systems. Washington DC, USA: IEEE, 2008: 1-6.
[56]  Jang J, Kim K, Lee Y B. Efficient algorithm of eye image check for robust iris recognition system[J]. Computer Analysis of Images and Patterns, 2003, 2756: 301-308.
[57]  Tabassi E, Grother P, Salamon W. IREX II-IQCE iris quality calibration and evaluation[R]. Washington DC, USA: NIST, 2011.
[58]  Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5): 513-516.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133