全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非下采样Contourlet域融合和参数化内核图割的SAR图像无监督水灾变化检测

DOI: 10.11834/jig.20140619

Keywords: NSCT融合,参数化内核,图割,变化检测,SAR图像

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的基于非下采样Contourlet变换(NSCT)融合策略可以有效地抑制背景信息增强变化区域的信息。但是融合后图像具有复杂的统计特征,传统的基于统计特征的变化检测难以实现。基于参数化内核图割的遥感图像分割不受统计特征的限制。为此提出了一种基于NSCT融合和参数化内核图割的SAR图像无监督水灾变化检测新算法。方法将均值比差异图像和对数比差异图像采用基于NSCT的融合算法进行融合,将融合后的差异图像采用参数化内核图割算法进行前景/背景的分割,得到最终的变化检测结果。结果融合后的差异图像利用前两种差异图像的互补信息提高了变化检测精度。算法不受统计模型限制,不需要先验知识,适用性强。结论实验结果表明,本文算法的检测精度优于传统的变化检测方法。

References

[1]  Radke R, Andra S, Al-Kofahi O,et al. Image chang detection algorithms: a systematic survey [J]. IEEE Transactions on Image Process,2005,14(3):294-307.
[2]  Mishra N, Ghosh S, Ghosh A. Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images [J]. Applied Soft Computing,2012,12:2683-2692.
[3]  Wan H L, Jiao L C, Xin F F. Interactive segmentation technique and decision-level fusion based change detection for SAR images [J]. Acta Geodaetica et Carto Graphica Sinica,2012,41(1):74-80.[万红林,焦李成,辛芳芳.基于交互式分割技术和决策级融合的SAR图像变化检测[J].测绘学报,2012,41(1):74-80.]
[4]  Michele V, Devis T, Gustavo C, et al. Unsupervised change detection With kernels [J]. IEEE Geoscience and Remote Sensing Letters, 2012,9(6):1026-1030.
[5]  Gong M G, Zhou Z Q, Ma J J. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering [J]. IEEE Transactions on Image Processing,2012,21(4):2141-2151.
[6]  Kuruoglu E, Zerubia J. Modeling SAR images with a generalization of the Rayleigh distribution [J]. IEEE Transactions on Image Processing,2004, 13(4):527-533.
[7]  Inglada J, Mercier G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis [J].IEEE Transactions on Geoscience and Remote Sensing, 2007,45(5):1432-1445.
[8]  Ma J J, Gong M G, Zhou Z Q. Wavelet fusion on ratio images for change detection in SAR images [J]. IEEE Geoscience and Remote Sensing Letters,2012,9(6):1122-1126.
[9]  Kuruoglu E E, Zerubia J. Modeling SAR images with a generalization of the Rayleigh distribution [J]. IEEE Transactions on Image Processing,2004,13(4):527-533.
[10]  Ma G R, Li P X, Qin Q Q. Based on fusion and GGM change detection approach of remote sensing images [J]. Journal of Remote Sensing, 2006,10(6):847-853.[马国锐,李平湘,秦前清.基于融合和广义高斯模型的遥感影像变化检测[J].遥感学报, 2006,10(6):847-853.]
[11]  Chen Y, Cao Z G. An improved MRF-based change detection approach for multitemporal remote sensing imagery [J]. Signal Processing,2012,93(1):163-175.
[12]  Wang F, Wu Y, Zhang Q,et al. Unsupervised change detection on SAR images using triplet markov field model [J].IEEE Geoscience and Remote Sensing Letters,2013,10(4):697-701.
[13]  Zhu S C. Statistical modeling and conceptualization of visual patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(6):691-712.
[14]  Salah M B, Mitiche A, Ismail B A. Multiregion image segmentation by parametric kernel graph cuts [J]. IEEE Transactions on Image Processing,2011,20(2):545-557.
[15]  Da Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications [J].IEEE Transactions on Image Processing,2006,15(10):3089-3101.
[16]  Vazquez C, Mitiche A, Ayed I B. Image segmentation as regularized clustering: a fully global curve evolution method [J]. IEEE International Conference on Image Processing,2004,5:3467-3470.
[17]  Celik T. Multiscale change detection in multitemporal satellite images [J]. IEEE Geoscience and Remote Sensing Letters,2009,6(4):820-840.
[18]  Wu C, Wu Y Q. Multitemporal images change detection using nonsubsampled contourlet transform and kernel fuzzy c-mean clustering [C]//International Symposium on Intelligence Information Processing and Trusted Computing.Hubei:IEEE,2011:96-99.
[19]  Xin F F. Change detection in remote sensing imagery based on fisher classifier and computational intelligence [D]. Xi\'an: Xi-dian University,2011.[辛芳芳.基于Fisher分类器和计算智能的遥感图像变化检测[D].西安:西安电子科技大学,2011.]
[20]  Rosin P L, Ioannidis E. Evaluation of global image thresholding for change detection [J]. Pattern Recognition Letters.,2003,24(14):2345-2356.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133