Angelidis A, Neyret F. Simulation of smoke based on vortex filament primitives [C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM press, 2005: 87-96.
[2]
Park S I, Kim M J. Vortex fluid for gaseous phenomena [C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: ACM Press, 2005: 261-270.
[3]
Selle A, Fedkiw R, Kim B, et al. An unconditionally stable maccormack method [J]. Journal of Scientific Computing, 2008, 35(2-3): 350-371.
[4]
Kim B, Liu Y, Llamas I, et al. FlowFixer: using BFECC for fluid simulation [C]//Proceedings of the First Eurographics Conference on Natural Phenomena. Aire-la-Ville, Switzerland: Eurographics Association, 2005: 51-56.
[5]
Molemaker J, Cohen M J, Patel S, et al. Low viscosity flow simulations for animation [C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville, Switzerland: Eurographics Association, 2008: 9-18.
[6]
Xu Y X, Liu S G, Wu L Q. Smoke simulation with two-scale vorticity confinement [J]. Multimedia and Signal Processing Communications in Computer and Information Science, 2012, 346: 467-474.
[7]
Selle A, Rasmussen N, Fedkiw R. A vortex particle method for smoke, water and explosions [J]. ACM Transactions on Graphics, 2005, 24(3): 910-914.
[8]
He S, Wong H C, Wong U H. An efficient adaptive vortex particle method for real-time smoke simulation [C]//Proceedings of the 12th International Conference on Computer-Aided Design and Computer Graphics. Washington: IEEE Computer Society, 2011: 317 - 324.
[9]
Golas A, Narain R, Sewall J, et al. Large-scale fluid simulation using velocity-vorticity domain decomposition [J]. ACM Transactions on Graphics, 2012, 31(6): #148.
[10]
Pfaff T, Thuerey N, Gross M. Lagrangian vortex sheets for animating fluids [J]. ACM Transactions on Graphics, 2012, 31(4): #112.
[11]
Brochu T, Keeler T, Bridson R. Linear-time smoke animation with vortex sheet meshes [C]//Proceedings of the 11th ACM SIGGRAPH/Eurographics Conference on Computer Animation. Aire-la-Ville, Switzerland: Eurographics Association, 2012: 87-95.
[12]
Barnat A, Pollard N S. Smoke sheets for graph-structured vortex filaments [C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville, Switzerland: Eurographics Association, 2012: 77-86.
[13]
Stam J. Stable fluids [C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley Publishing Co., 1999: 121-128.
[14]
Fedkiw R, Stam J, Jensen H W. Visual simulation of smoke [C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 2001: 15-22.
[15]
Treuille A, Lewis A, Popovic' Z. Model reduction for real-time fluids [C]//ACM SIGGRAPH. New York: ACM press, 2006: 826-834.
[16]
Wicke M, Stanton M, Treuille A. Modular bases for fluid dynamics [J]. ACM Transactions on Graphics, 2009, 28(3), 39(1-8).
[17]
Macklin M, Müller M. Position based fluids [J]. ACM Transactions on Graphics 2013, 32(4): #104.
[18]
Angelidis A, Neyret F, Singh K, et al. A controllable, fast and stable basis for vortex based smoke simulation [C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville, Switzerland: Eurographics Association, 2006: 25-32.
[19]
Bridson R, Müller M. Fluid simulation: video files associated with this course are available from the citation page[C]//ACM SIGGRAPH 2007 Courses. New York: ACM Press, 2007: 1-81.
[20]
Bhatia H, Norgard G, Pascucci V, et al. The helmholtz-hodge decomposition-a survey [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(8): 1386-1404.