Csurk G,Dance C,Fan L,et al. Visual categorization with bags of keypoints[C]//Proceedings of Workshop of European Conference on Computer Vision on Statistical Learning in Computer Vision. Prague,Czech Republic:Cambridge University Press,2004:1-22.
[2]
Boiman O,Shechtman E,Irani M. In defense of nearest-neighbor base image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage,Alaska:IEEE Computer Society,2008:1-8.
[3]
Mccann S,Lowe D G. Local na?ve bayes nearest neighbor for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC,USA:IEEE Computer Society,2012:3650-3656.
[4]
Zhang H,Berg A C,Maire M,et al. SVM-KNN:discriminative nearest neighbor classification for visual category recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York,USA:IEEE Computer Society,2006,2:2126-2136.
[5]
Andrews S,Tsochantaridis I,Hofmann T. Support vector machines for multiple-instance learning[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge,MA:MIT press,2003:561-568.
[6]
Viola P, Platt J,Zhang C. Multiple instance boosting for object detection[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge,MA:MIT Press,2006:1417-1424.
[7]
Xu Y, Zhu J Y,Chang E,et al. Multiple clustered instance learning for histopathology cancer image classification,segmentation and clustering[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC,USA:IEEE Computer Society,2012:964-971.
[8]
Wang Q F,Si L,Zhang D. A discriminative data-dependent mixture-model approach for multiple instance learning in image classification[C]//Proceedings of the 12th European Conference on Computer Vision. Florence,Italy:Springer-Verlag,2012,5:660-673.
[9]
Thomas D,Ferrari V. A Conditional random field for multiple-instance learning[C]//Proceeding of International Conference on Machine Learning. Haifa,Israel:Omni Press,2010:287-294.
[10]
Duan K,Parikh D,Crandall D,et al. Discovering localized attributes for fine-grained recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC,USA:IEEE Computer Society,2012:3474-3481.
[11]
Felzenszwalb P F,Girshick R B,Mcallester D,et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645.
[12]
Li Q N,Yao C,Wang L W,et al. Randomness and sparsity induced codebook learning with application to cancer image classification[C]//Proceedings of Workshop of Computer Vision and Pattern Recognition. Providence RI:IEEE Computer Society,2012:16-23.
[13]
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110.
[14]
Liu L Q,Wang L,Liu X W. In defense of soft-assignment coding[C]//Proceedings of IEEE International Conference on Computer Vision. Barcelona,Spain:IEEE Computer Society,2011:2486-2493.
[15]
Chang C C,Lin C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-27.
[16]
Lazebnik S,Schmid C,Ponce J. Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York,USA:IEEE Computer Society,2006,2:2169-2178.
[17]
Yang J C,Yu K,Gong Y H,et al. Linear spatial pyramid matching using sparse coding for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami,USA:IEEE Computer Society,2009:1794-1801.
[18]
Wang J J,Yang J C,Yu K,et al. Locality-constrained linear coding for image-classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco,USA:IEEE Computer Society,2010:3360-3367.