全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SAR复图像数据的CCSDS-IDC编码性能分析与四叉树编码

DOI: 10.11834/jig.20140502

Keywords: CCSDS-IDC,SAR复图像数据,离散小波变换(DWT),四叉树编码(QC)

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的CCSDS-IDC(国际空间数据系统咨询委员会-图像数据压缩)是NASA制定的基于离散小波变换(DWT)尺度间衰减性的空间图像数据压缩标准,适用于合成孔径雷达(SAR)幅度图像及各类遥感图像的压缩。然而,与光学图像不同,常见的SAR图像都是复图像数据,其在干涉测高等许多场合具有广泛应用,分析研究CCSDS-IDC对SAR复图像数据的编码性能具有重要的应用价值。方法由于SAR复图像数据不具有尺度间的衰减性,因此将其用于SAR复图像数据编码时性能较低。考虑到SAR复图像数据离散小波变换(DWT)系数呈现出聚类特性,提出将四叉树(QC)用于DWT域的SAR复图像数据编码,发现QC对SAR复图像数据具有高效的压缩性能。结果实验结果表明,在同等码率下,对基于DWT的SAR复图像数据压缩,QC比CCSDS-IDC最多可提高幅度峰值信噪比4.4dB,平均相位误差最多可降低0.368;与基于方向提升小波变换(DLWT)的CCSDS-IDC相比,QC可提高峰值信噪比3.08dB,降低平均相位误差0.25;对其他类型的图像压缩,基于聚类的QC仍能获得很好的编码性能。结论CCSDS-IDC对SAR复图像数据编码性能低下,而QC能获得很好的编码性能。对应于图像平滑分布的尺度间衰减性,其在某些特殊图像中可能不存在,而对应于图像结构分布的聚类特性总是存在的,故在基于DWT的图像编码算法设计中,应优先考虑利用小波系数的聚类特性,从而实现对更多种类图像的高效编码。

References

[1]  Munteanu A,Cornelis J,Auwera G V D,et al. Wavelet image compression-the quadtree coding approach [J]. IEEE Transactions on Information Technology in Biomedicine,1999,3(3):176-185.
[2]  Shapiro J M. Embedded image coding using zero-trees of wavelet coefficients [J]. IEEE Transactions on Signal Processing,1993,41(12):3445-3462.
[3]  Said Amir,Pearlman W A. A new,fast,and efficient image codec based on set partitioning in hierarchal trees [J]. IEEE Transactions on Circuits and Systems for Video Technology,1996,6(3):243-250.
[4]  Consultative Committee for Space Data Systems. CCSDS 120.1-G-1 Image Data Compression [S]. Washington DC:CCSDS,2007.
[5]  Sandia National Laboratories. Sandia SAR data [DB/OL].2005-5-19[2012-10-12]. http://www.sandia.gov/radar/sar-data.html.
[6]  Consultative Committee for Space Data Systems. CCSDS 120.1-B-1 Image Data Compression [S]. Washington DC:CCSDS,2005.
[7]  Hou X S,Liu G Z,Zou Y Y. Embedded quadtree-based image compression in DCT domain [C]//Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing. Hong Kong, China: IEEE,2003:277-280.
[8]  Witten I H,Neal R M,Cleary J G. Arithmetic coding for data compression [J]. Communications of the ACM,1987,30(6):520-540.
[9]  Garcia V F,Serra S J. Extending the CCSDS recommendation for image data compression for remote sensing scenarios [J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(10):3431-3445.
[10]  Tai S C,Kuo T M,Ho C H,et al. A near-lossless compression method based on CCSDS for satellite images [C]//The International Symposium on Computer,Consumer and Control. Taichung:IEEE,2012:706-709.
[11]  Hou X S,Yang J,Jiang G F,et al. Complex SAR image compression based on directional lifting wavelet transform with high clustering capability [J]. IEEE Transactions on Geoscience and Remote Sensing,2013,51(1):527-538.
[12]  Pan Z G,Gao X,Sun X M,et al. A lossless compression algorithm for SAR amplitude imagery based on modified quadtree coding of bit plane [J]. IEEE Geoscience and Remote Sensing Letters,2010,7(4):723-726.
[13]  Hou X S,Liu G Z,Zou Y Y. SAR image data compression using wavelet packet transform and universal-trellis coded quantization [J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(11):2637-2641.
[14]  Mallat S. A Wavelet Tour of Signal Processing The Sparse Way[M]. 3rd ed. Beijing: China Machine Press,2012:338-346. [Mallat S.信号处理的小波导引:稀疏方法[M].3版.北京:机械出版社, 2012:338-346.]
[15]  Crouse M S,Nowak R D,Baraniuk R G. Wavelet-based statistical signal processing using hidden markov models [J]. IEEE Tran- sactions on Signal Processing,1998,46(4):886-902.
[16]  Taubman D S,Marcellin M W. JPEG2000 Image Compression Fundamentals, Standards and Practice [M]. Beijing:Publishing House of Electronics Industry,2004:270-274. [Taubman D S,Marcellin M W. JPEG2000:图像压缩基础、标准、和实践[M].北京:电子工业出版社, 2004:270-274.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133