全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从表面重构的体数据实现3维网格剖分

DOI: 10.11834/jig.20140516

Keywords: 四面体网格,Delaunay三角剖分,尺度控制数组,平滑滤波器

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的针对有限元分析中网格最优化问题,提出一种改进的生成四面体网格的自组织算法。方法该算法首先应用几何方法将三角形表面模型重新构造成规定大小的分类体数据,同时由该表面模型建立平衡八叉树,计算用以控制网格尺寸的3维数组;然后将体数据转换成邻域内不同等值面的形态一致的边界指示数组;结合改进的自组织算法和相关3维数据的插值函数,达到生成四面体网格的目的。结果实验结果对比表明,该方法能够生成更高比例的优质四面体,增强了对扁平面体的抑制能力,同时很好地保证了边界的一致。结论在对封闭的3维表面网格进行有限元建模时,本文算法为其提供了一种有效、可靠的途径。

References

[1]  Persson P O, Strang G. A simple mesh generator in MATLAB[J]. SIAM Review, 2004, 46(2): 329-345. [DOI: 10.1137/S0036144503429121]
[2]  Alliez P, Cohen-Steiner D, Yvinec M, et al. Variational tetrahedral meshing[J]. ACM Transactions on Graphics(TOG), 2005, 24(3): 617-625. [DOI: 10.1145/1073204.1073238]
[3]  Dardenne J, Valette S, Siauve N, et al. Variational tetrahedral mesh generation from discrete volume data[J]. Visual Compu- ter, 2009, 25(5-7): 401-410. [DOI: 10.1007/s00371-009-0323-7]
[4]  Alliez P, Cohen-Steiner D, Tong Y, et al. Voronoi-based variational reconstruction of unoriented point sets[C]//The Fifth Eurographics Symposium on Geometry Processing. Barcelona, Spain: Eurographics Association, 2007: 39-48.
[5]  Yang X S, Sheng H, Tang Z S. Segmented volume based tetrahedralization algorithm[J]. Journal of Image and Graphics, 2002, 7(9): 865-870. [杨晓松, 申皓,唐泽圣. 基于分类体数据的四面体网格剖分算法[J]. 中国图象图形学报, 2002, 7(9): 865-870.]
[6]  Liu L Q, Shao Z. A fast line rasterization algorithm based on pattern decomposition[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(8): 1286-1292. [牛连强,邵中. 基于模式分解的快速直线生成算法[J]. 计算机辅助设计与图形学学报, 2010, 22(8): 1286-1292.]
[7]  Fang Q, Boas D A. Tetrahedral mesh generation from volumetric binary and grayscale images[C]//IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Boston, Massachusetts, USA: IEEE, 2009: 1142-1145. [DOI: 10.1109/ISBI.2009.5193259]
[8]  Guan Z Q, Song C, Gu Y X, et al. Recent advances of research on finite element mesh generation methods[J]. Journal of Computer-Aided Design & Computer Graphics, 2003,15(1): 1-14. [关振群, 宋超, 顾元宪,等. 有限元网格生成方法研究的新进展[J]. 计算机辅助设计与图形学学报, 2003, 15(1): 1-14.]
[9]  Yu J, Lü P, Zhen C W. A comparative research on methods of Delaunay triangulation[J]. Journal of Image and Graphics, 2010, 15(8): 1158-1167. [余杰, 吕品,郑昌文. Delaunay三角网构建方法比较研究[J]. 中国图象图形学报, 2010, 15(8): 1158-1167.]
[10]  Wang L, Nie Y F, Li Y Q. Advances of research on parallel Delaunay tetrahedral mesh generation[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(6): 923-932. [王磊, 聂玉峰,李义强. Delaunay四面体网格并行生成算法研究进展[J]. 计算机辅助设计与图形学学报, 2011, 23(6): 923-932.]
[11]  George P L, Seveno E. The advancing-front mesh generation method revisited[J]. International Journal for Numerical Methods in Engineering, 1994, 37(21): 3605-3619. [DOI: 10.1002/nme.1620372103]
[12]  Guan Z Q, Shan J L, Gu Y X. Surface mesh generation based on Riemannian metric[J]. Chinese Journal of Computers, 2006, 29(10): 1823-1833. [关振群, 单菊林,顾元宪. 基于黎曼度量的复杂参数曲面有限元网格生成方法[J]. 计算机学报, 2006, 29(10): 1823-1833.]
[13]  Bowyer A. Computing dirichlet tessellations[J]. The Computer Journal, 1981, 24(2): 162-166. [DOI: 10.1093/comjnl/24.2.162]
[14]  Watson D F. Computing the n-dimensional delaunay tessellation with applications to voronoi polytopes[J]. The Computer Journal, 1981, 24(2): 167-172. [DOI: 10.1093/comjnl/24.2.167]
[15]  Chen J, Zhao D, Huang Z, et al. Three-dimensional constrained boundary recovery with an enhanced Steiner point suppression procedure[J]. Computers & Structures, 2011, 89(5): 455-466. [DOI: 10.1016/j.compstruc.2010. 11.016]
[16]  Labelle F, Shewchuk J R. Isosurface stuffing: fast tetrahedral meshes with good Dihedral angles[J]. ACM Transactions on Graphics, 2007, 26(3): 57.[DOI: 10.1145/1239451.1239508]
[17]  Wang J, Yu Z Y. Feature-sensitive tetrahedral mesh generation with guaranteed quality[J]. Computer-Aided Design, 2012, 44(5): 400-412. [DOI: 10.1016/j.cad.2012.01.002]
[18]  Si H, Gartner K. 3D boundary recovery by constrained Delaunay tetrahedralization[J]. International Journal for Numerical Methods in Engineering, 2011, 85(11): 1341-1364. [DOI: 10.1002/nme.3016]
[19]  Persson P O. Mesh size functions for implicit geometries and PDE-based gradient limiting[J]. Engineering with Computers, 2006, 22(2): 95-109. [DOI: 10.1007/s00366-006-0014-1]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133