全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

区域语义多样性密度的图像标注

DOI: 10.11834/jig.20140514

Keywords: 多样性密度,区域语义,距离相似度,空间位置,属性标注

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的随着Web2.0下海量共享图像的出现,如何获取图像具有描述力的精准区域标注具有重要研究意义。方法提出一种基于区域语义多样性密度的图像标注框架,重点考虑区域间的视觉特征差异和空间结构差异。具体来说,基于距离相似度的特征多样性密度实现了区域特征语义标注;引入负相关示例的惩罚作用实现了区域空间关系语义及属性语义标注。结果在部分NUS-WIDE和MSRC数据集上验证了方法的有效性,区域属性标注的正确率在80%以上,同时基于属性标注的图像检索的平均查准率达到82%。结论实验结果表明,本文图像标注框架可以较精确地得到标注的相关语义区域和属性标注,能够有效解决区域标注问题。

References

[1]  Mori Y, Takahashi H, Oka R. Image-to-word transformation based on dividing and vector quantizing images with words[C]//Proceedings of the 1st International Workshop on Multimedia Intelligent Storage and Retrieval Management. Orlando, Florida: MISRM, 1999: 1-9.
[2]  Duygulu P, Barnard K, de Freitas J F G, et al. Object recognition as machine translation: learning a lexicon for a fixed image vocabulary[C]//Proceedings of 7th European Conference on Computer Vision. Berlin: Springer Verlag, 2002:97-112.
[3]  Jeon J, Lavrenko V, Manmatha R. Automatic image annotation and retrieval using cross-media relevance models[C]//Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval. Toronto, Canada: ACM, 2003: 119-126.
[4]  Kang F, Jin R, Sukthankar R. Correlated label propagation with application to multi-label learning[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Computer Society, 2006,2: 1719-1726.
[5]  Cao L L, Li F F. Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes [C]//Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE Computer Society, 2007: 1-8.
[6]  Chen Y H, Zhu L, Yuille A, et al. Unsupervised learning of probabilistic object models(poms) for object classification, segmentation, and recognition using knowledge propagation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(10): 1747-1761.
[7]  Shotton J, Winn J, Rother C, et al. Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation [C]//Proceedings of Computer Vision-ECCV 2006. Berlin: Springer Berlin Heidelberg, 2006, 3951: 1-15.
[8]  Liu X B, Cheng B, Yan S C, et al. Label to region by bi-layer sparsity priors[C]//Proceedings of the 17th ACM International Conference on Multimedia. Beijing, China: ACM, 2009: 115-124.
[9]  Wang M, Ni B B, Hua X S, et al. Assistive tagging: a survey of multimedia tagging with human-computer joint exploration [J]. ACM Computing Surveys, 2012, 44(4): 25.[ DOI: 10.1145/2333112.2333120]
[10]  Liu D, Yan S C, Rui Y, et al. Unified tag analysis with multi-edge graph[C]//Proceedings of the International Conference on Multimedia. Firenze, Italy: ACM, 2010: 25-34.
[11]  Dietterich T G, Lathrop R H, Lozano-Pérez T. Solving the multiple instance problem with axis-parallel rectangles [J]. Artificial Intelligence, 1997, 89(1): 31-71.
[12]  Maron O, Lozano-Pérez T. A framework for multiple- instance learning [C]//Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1998: 570-576.
[13]  Yang C, Dong M, Fotouhi F. Region based image annotation through multiple-instance learning[C]//Proceedings of the 13th Annual ACM International Conference on Multimedia. Singapore: ACM, 2005: 435-438.
[14]  Yang C, Dong M, Hua J. Region-based image annotation using asymmetrical support vector machine-based multiple-instance learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2006, 2: 2057-2063.
[15]  Feng S H, Lang C Y, Xu D. Beyond tag relevance: integrating visual attention model and multi-instance learning for tag saliency ranking [C]//Proceedings of the ACM International Conference on Image and Video Retrieval. New York, USA: ACM, 2010: 288-295.
[16]  Yang K Y, Hua X S, Wang M, et al. Tagging tags: towards more descriptive keywords of image content [J]. IEEE Transactions on Multimedia, 2011, 13(4): 662-673.
[17]  Deng Y, Manjunath B S. Unsupervised segmentation of color-texture regions in images and video [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(8): 800-810.
[18]  Chua T S, Tang J H, Hong R C, et al. NUS-WIDE: a real-world web image database from national university of singapore [C]//Proceedings of the 8th ACM International Conference on Image and Video Retrieval. Santorini, Greece: ACM, 2009:#48. [DOI: 10.1145/1646396.1646452]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133