全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

足球视频搜索引擎中的用户偏好挖掘

DOI: 10.11834/jig.20140417

Keywords: 互联网,足球视频,搜索引擎,用户反馈,偏好挖掘,视频推荐

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的互联网信息量的急速增长使得人们需要花费大量时间从搜索引擎召回的结果中浏览自身感兴趣的内容,结合用户的搜索日志信息和社交平台信息,提出一种分层的实时偏好挖掘模型,为用户提供个性化搜索服务。方法在系统分析偏好挖掘的国内外研究现状的基础上,针对足球视频,提出一种分层权重无向图(HWUG)用户偏好模型,充分考虑用户偏好之间的关联信息,通过获取用户在足球领域的显式和隐式反馈信息,提取反馈信息中的偏好标签和偏好动作,并引入时间衰减因子,实现用户足球偏好的实时计算。结果算法已经应用在搜球网(www.findball.net)的个性化检索结果排序和视频推荐上,并已经取得了很好的效果。结论实验结果表明,结合特定领域的知识,基于分层无向权重图模型的偏好挖掘算法能更准确和实时反映用户的足球偏好。

References

[1]  Sanasam R S, Murthy H A, Gonsalves T A. Determining user\'s interest in real time[C]//Proceedings of the 17th International Conference on World Wide Web. New York, USA: ACM, 2008: 1115-1116.[DOI: 10.1145/1367497.1367683]
[2]  Chen W Y, Zhang D, Chang E Y. Combinational collaborative filtering for personalized community recommendation[C]//Proceedings of the 14th ACM SIGKDD internationa conference on Knowledge discovery and data mining. New York, USA: ACM, 2008: 115-123.[DOI: 10.1145/1401890.1401909]
[3]  Sun T, Wang L, Guo Q. A collaborative filtering recommendation algorithm based on item similarity of user preference[C]//Proceedings of Second International Workshop on Knowledge Discovery and Data Mining. Moscow: IEEE, 2009: 60-63.[DOI: 10.1109/WKDD.2009.90]
[4]  Xu G, Yang S H, Li H. Named entity mining from click-through data using weakly supervised latent dirichlet allocation[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 1365-1374.[DOI: 10.1145/1557019.1557165]
[5]  Li M, Zheng Y, Neo S Y, et al. Personalized event-based news video retrieval with dynamic user-log[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Hannover: IEEE, 2008: 1157-1160.[DOI: 10.1109/ICME.2008.4607645]
[6]  Zhang Y, Zhang X, Xu C, et al. Personalized retrieval of sports video[C]//Proceedings of the International Workshop on Multimedia Information Retrieval. New York, USA: ACM, 2007: 313-322.[DOI: 10.1145/1290082.1290126]
[7]  Zhang L, Zhang Y. Interactive retrieval based on faceted feedback[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Developmet in Information Retrieval. New York, USA: ACM, 2010: 363-370.[DOI: 10.1145/1835449.1835511]
[8]  Park J, Lee S J, Lee S J, et al. Online video recommendation through tag-cloud aggregation[J]. IEEE MultiMedia, 2011, 18(1): 78-86.[DOI:10.1109/MMUL.2010.6]
[9]  Li H, Murata T. Improving personalized recommendation in VSS based on user\'s preference[C]//Proceedings of the International MultiConference of Engineers and Computer Scientists. Hong Kong, China: Newswood Limited Press, 2012:580-584.
[10]  Chen B, Wang J, Huang Q, et al. Personalized video recommendation through tripartite graph propagation[C]//Proceedings of the 20th ACM International Conterence on Multimedia. New York, USA: ACM, 2012: 1133-1136.[DOI: 10.1145/2393347.2396401]
[11]  Zigoris P, Zhang Y. Bayesian adaptive user profiling with explicit & implicit feedback[C]//Proceedings of the 15th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2006: 397-404.[DOI: 10.1145/1183614.1183672]
[12]  Chen W Y, Chu J C, Luan J, et al. Collaborative filtering for orkut communities: discovery of user latent behavior[C]//Proceedings of the 18th International Conference on World Wide Web. New York, USA: ACM, 2009: 681-690.[DOI: 10.1145/1526709.1526801]
[13]  Hopfgartner F, Vallet D, Halvey M, et al. Search trails using user feedback to improve video search[C]//Proceedings of the 16th ACM International Conference on Multimedia. New York, USA: ACM, 2008: 339-348.[DOI: 10.1145/1459359.1459405]
[14]  Xin C X, Gao F R, Zhan S N, et al.Adapt to changes in user interest collaborative filtering recommendation algorithm[J].Computer Research and Development, 2007, 44(2): 296-301.[邢春晓, 高凤荣, 战思南, 等. 适应用户兴趣变化的协同过滤推荐算法[J]. 计算机研究与发展, 2007, 44(2): 296-301.]
[15]  Sanderson M, Paramita M L, Clough P, et al. Do user preferences and evaluation measures line up[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2010: 555-562.[DOI: 10.1145/1835449.1835542]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133