全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进的局部方向模式纹理表示方法

DOI: 10.11834/jig.20140404

Keywords: 纹理分类,局部方向模式,纹理特征,局部二值模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的纹理是描述和区分不同物体的重要特征之一,纹理特征提取一直是模式识别、机器视觉领域的研究热点。局部方向模式(LDP)是一种分辨性好、对随机噪声和非均匀光照鲁棒的纹理特征。而LDP特征由于计算8方向的边缘响应并排序,提取速度较慢。为此对LDP编码方案进行改进。方法设计了两种改进方案:第1种方案直接对8方向的边缘响应符号进行编码,避开排序,称为FLDP(fastlocaldirectionalpattern)特征;第2种方案,尝试使用较少的方向模板来降低特征提取的时间、空间消耗,设计了MLDP算子(minilocaldirectionalpattern)。结果在Brodatz数据集的24类均匀纹理图像以及111类全部纹理图像上将本文提出的FLDP特征、MLDP特征与传统的LDP进行了对比实验。实验结果表明,在保证了分类准确率的前提下,FLDP算子的运算速度是3th-LDP的20倍左右,MLDP算子的运算速度是3th-LDP的35倍左右。结论论文设计了2种方案改进了LDP特征,分别为FLDP算子和MLDP算子。实验结果表明,这两种改进方案,在保证分类准确率的同时,大幅度提高了特征提取运算速度。

References

[1]  Liu L, Kuang G Y.Overview of image textural feature extraction methods[J].Journal of Image and Graphics, 2009, 14(4): 622-635.[刘丽, 匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报, 2009, 14(4): 622-635.]
[2]  Leung T, Malik J.Representing and recognizing the visual appearance of materials using three-dimensional textons[J].Computer Vision, 2001, 43(1): 29-44.
[3]  Varma M, Zisserman A.A statistical approach to material classification using image patch exemplars[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(11): 2032-2047.
[4]  Liu L, Fieguth P W.Texture classification from random features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 574-586.
[5]  Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2):91-110.
[6]  Bay H, Tuytelaars T, Van L, et al.SURF: speeded up robust features[J].Computer Vision and Image Understanding, 2008, 110(3):346-359.
[7]  Vu N S, Caplier A.Face recognition with patterns of oriented edge magnitudes[C]//Proceedings of the 11th European Conference on Computer Vision: Part I.Crete, Greece: Springer Press, 2010: 313-326.
[8]  Jabid T, Kabir M H, Chae O S.Local directional pattern(LDP)for face recognition[C]//Proceedings of the IEEE International Conference on Consumer Electronics.Las Vegas, Nevada, USA: IEEE Press, 2010:329-330.
[9]  Tan X Y, Triggs B.Enhanced local texture feature sets for face recognition under difficult lighting conditions[C]//Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures.Rio de Janeiro, Brazil: Springer Press, 2007:168-182.
[10]  Shao Z F, Li D R, Zhu X Q.A multi-scale and multi-orientation image retrieval method based on rotation-invariant texture features[J].Science China Information Sciences, 2011, 41(3):283-296.[邵振峰, 李德仁, 朱先强.基于旋转不变纹理特征的多尺度多方向图像渐进检索[J].中国科学: 信息科学, 2011, 41(3):283-296.]
[11]  Brodatz P.Textures: A Photographic Album for Artists and Designers[M].New York: Dover Publications, 1966.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133