全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非规则弯曲形变的不变量表示

DOI: 10.11834/jig.20140409

Keywords: 测地距离,弯曲图形,骨架,不变量

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的全局描述不变量具有低维数和相似性测量简单的特点,针对非规则弯曲形变图形,提出一种基于中轴骨架测地距离改进的全局描述不变量。方法首先利用测地距离对于弯曲形变的不敏感性,修正图像质心位置;其次提取弯曲形变图像的中轴骨架代替图像全局域作为运算点集,并分配权重,降低计算复杂度,进而以此为基础提出一种单维度全局不变量。结果实验结果表明该不变量具有良好的TRS(translation,rotation,scaling)不变性和弯曲形变不敏感性,相对其他传统特征表示方法,能够有效表示和鉴别非规则弯曲图形。结论本文提出的单维度全局描述不变量,结构简单,计算方便。对于同类图像的弯曲变形,能够有效地进行区分,为该类图形的识别提供一种新的方法和思路。

References

[1]  Hu M K.Visual pattern recognition by moment invariants[J]. IEEE Transactions on Information Theory, 1962, 8:179-182.
[2]  Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2): 91-110.
[3]  Belongie S, Malik J, Puzicha J.Shape matching and object recognition using shape contexts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
[4]  Marszalek M, Schmid C.Accurate object recognition with shape masks[J].International Journal of Computer Vision, 2012, 97(2): 191-209.
[5]  Sandler R, Lindenbaum M.Nonnegative matrix factorization with earth mover\'s distance metric for image analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1590-1602.
[6]  Oudre L, Jakubowicz J, Bianchi P, et al.Classification of periodic activities using the wasserstein distance[J].IEEE Transactions on Biomedical Engineering, 2012, 59(6): 1610-1619.
[7]  Bronstein M M, Bronstein A M.Shape recognition with spectral distances[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 1065-1071.
[8]  Ling H B, Jacobs D W.Shape classification using the inner-distance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 286-299.
[9]  Bronstein A M, Bronstein M M, Bruckstein A M, et al.Analysis of two-dimensional non-rigid shapes[J].International Journal of Computer Vision, 2008, 78(1): 67-88.
[10]  Elad A, Kimmel R.On bending invariant signatures for surfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1285-1295.
[11]  Ling H B, Jacobs D W.Deformation invariant image matching[C]//Proceedings of the 10th IEEE International Conference on Computer Vision.Beijing, China: IEEE, 2005: 1466-1473.
[12]  Rubner Y, Tomasi C, Guibas L J.The earth mover\'s distance as a metric for image retrieval[J].International Journal of Computer Vision, 2000, 40(2): 99-121.
[13]  Zheng D C, Han M.Shape context based on h-emd algorithm for shape matching[J].Control and Decision, 2012, 27(11): 1639-1643.[郑丹晨, 韩敏.基于H-EMD的形状上下文特征形状匹配方法[J].控制与决策, 2012, 27(11): 1639-1643.]
[14]  Sethian J A.A fast marching level set method for monotonically advancing fronts[J].Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(4): 1591-1595.
[15]  Rabin J, Peyré G, Cohen L D.Geodesic shape retrieval via optimal mass transport[C]//Computer Vision-ECCV 2010.Berlin: Springer, 2010, 6315: 771-784.
[16]  Rosin P L.Shape description by bending invariant moments[C]//Computer Analysis of Images and Patterns. Berlin Heidelberg: Springer, 2011, 6854: 253-260.
[17]  Khanam S, Jang S W, Paik W.Geometrical retrieval of images using discrete shock graph-based shape features[J].Information-an International Interdisciplinary Journal, 2011, 14(10): 3425-3438.
[18]  Sebastian T B, Klein P N, Kimia B B.Recognition of shapes by editing their shock graphs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 550-571.
[19]  Yang X G, Fu G Y, Miao D, et al.A new approach to target recognition based on image nmi feature[J].Computer Engineering, 2002, 28(6): 149-151.[杨小冈, 付光远, 缪栋, 等.基于图像NMI特征的目标识别新方法[J].计算机工程, 2002, 28(6): 149-151.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133