全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合全局和局部信息的“两阶段”活动轮廓模型

DOI: 10.11834/jig.20140312

Keywords: 图像分割,活动轮廓,局部二值拟合,偏微分方程,灰度不均匀

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的LBF(localbinaryfitting)模型用每个像素点的邻域信息来拟合局部能量,对灰度不均匀图像可以得到很好的分割效果。但是LBF模型只考虑了图像的局部信息,没有考虑全局信息,因此它对初始轮廓大小、形状及位置都非常敏感。针对以上问题,结合全局和局部信息,提出“两阶段”活动轮廓模型。方法第1阶段,采用退化的CV(Chan-Vese)模型,利用图像的全局信息(灰度均值)快速为图像的目标大致定位;第2阶段,以第1阶段结束时的水平集函数的零水平集为第2阶段的初始轮廓,利用图像的局部信息(局部高斯拟合)得到更加精确的分割结果。结果实验结果表明,该“两阶段”活动轮廓模型保留了LBF模型分割灰度不均匀图像的能力。结论改进后的模型较LBF模型对各种初始轮廓(大小、形状、位置)有较强的鲁棒性,以及较强的抗噪性。

References

[1]  Zhou B, Yang X L, Liu R, et al.Image segmentation with partial differential equations[J].Information Technology Journal, 2010, 9(5):1049-1052.
[2]  Kass M, Witkin A, Terzopoulos D.Snakes: active contour models[J].International Journal of Computer Vision, 1988, 1: 321-331.
[3]  Caselles V, Kimmel R, Sapiro G.Geodesic active contours[J].International Journal of Computer Vision, 1997, 22(1): 61-79.
[4]  Chan T, Vese L.Active contours without edges[J].IEEE Transactions on Image Processing, 2001, 10(2):266-277.
[5]  Li C M, Kao C Y, Gore J C, et al.Implicit active contours driven by local binary fitting energy[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington DC, USA, IEEE Computer Society, 2007: 1-7.
[6]  Wang X F, Huang D S, Xu H.An efficient local Chan-Vese model for image segmentation[J].Pattern Recognition, 2010, 43 (3): 603-618.
[7]  Liu R J, He C J, Yuan Y.Active contours driven by local and global image fitting energy[J].Journal of Computer-Aided Design & Computer Graphics, 2012, 24(3): 364-371.[刘瑞娟,何传江,原野.融合局部和全局图像信息的活动轮廓模型[J].计算机辅助设计与图形学学报, 2012, 24(3), 364-371.]
[8]  Zhang K H, Song H H, Zhang L.Active contours driven by local image fitting energy[J].Pattern Recognition, 2010, 43(4): 1199-1206.
[9]  Wang L, Li C M, Sun Q S, et al.Active contours driven by local and global intensity fitting energy with application to MR image segmentation[J].Computerized Medical Imaging and Graphics, 2009, 33(7): 520-531.
[10]  Mumford D, Shah J.Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42 (5): 577-685.
[11]  Cai X H, Chan R, Zeng T Y.A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[J].SIAM Journal on Image Sciences, 2013, 6: 368-390.
[12]  Yuan Y, He C J.Adaptive active contours without edges[J].Mathematical and Computer Modeling, 2012, 55: 1705-1721.
[13]  Liu B, Cheng H D, Huang J, et al.Probability density difference-based active contour for ultrasound image segmentation[J].Pattern Recognition, 2010, 43: 2028-2042.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133