全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2013 

硫掺杂橄榄状BiVO4上可见光降解亚甲基蓝和甲醛水溶液性能

DOI: 10.1016/S1872-2067(12)60632-9, PP. 1617-1626

Keywords: 硫掺杂,钒酸铋,可见光催化,橄榄状形貌,亚甲基蓝降解,甲醛水溶液降解

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在无和有S源(Na2S或硫脲)存在的条件下,采用十二胺辅助的醇-水热法制备了多孔单斜晶相结构的BiVO4-δ和不同含量S掺杂的BiVO4-δ光催化剂.利用多种手段表征了催化材料的物化性质,评价了它们在可见光照射下催化降解亚甲基蓝或甲醛的反应活性.结果表明,所制光催化剂为单斜白钨矿晶相结构,具有多孔橄榄状形貌,比表面积为8.4-12.5m2/g,带隙能为2.40-2.48eV.在S掺杂BiVO4-δ表面同时含有Bi5+,Bi4+,V5+和V4+物种.S掺杂对BiVO4-δ光催化剂的活性影响很大.在可见光下照射下,BiVO4-δS0.08光催化剂对亚甲基蓝和甲醛降解反应显示出最高的光催化活性,这与其较高的表面氧物种浓度和较低的带隙能相关.

References

[1]  Obregón Alfaro S, Martínez-de la Cruz A. Appl Catal A, 2010, 383: 128
[2]  Ng Y H, Iwase A, Kudo A, Amal R. J Phys Chem Lett, 2010, 1: 2607
[3]  Yin W Z, Wang W Z, Zhou L, Sun S M, Zhang L. J Hazard Mater, 2010, 173: 194
[4]  Jiang H Y, Dai H X, Meng X, Ji K M, Zhang L, Deng J G. Appl Catal B, 2011, 105: 326
[5]  Zhou Y, Vuille K, Heel A, Probst B, Kontic R, Patzke G R. Appl Catal A, 2011, 375: 140
[6]  Naya S, Tanaka M, Kimura K, Tada H. Langmuir, 2011, 27: 10334
[7]  Eda S, Fujishima M, Tada H. Appl Catal B, 2012, 125: 288
[8]  Kohtani S, Koshiko M, Kudo A, Tokumura K, Ishigaki Y, Toriba A, Hayakawa K, Nakagaki R. Appl Catal B, 2003, 46: 573
[9]  Tokunaga S, Kato H, Kudo A. Chem Mater, 2001, 13: 4626
[10]  Zhang X, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Mater Chem Phys, 2007, 103: 162
[11]  Madhusudan P, Ran J R, Zhang J, Yu J G, Liu G. Appl Catal B, 2011, 110: 286
[12]  Shen G Z, Cho J H, Yoo J K, Yi G-C, Lee C J. J Phys Chem B, 2005, 109: 5491
[13]  Jiang H Y, Meng X, Dai H X, Deng J G, Liu Y X, Zhang L, Zhao Z X, Zhang R Z. J Hazard Mater, 2012, 217-218: 92
[14]  Jiang H Y, Dai H X, Meng X, Zhang L, Deng J G, Liu Y X, Au C T. J Environ Sci, 2012, 24: 449
[15]  Meng X, Zhang L, Dai H X, Zhao Z X, Zhang R Z, Liu Y X. Mater Chem Phys, 2011, 125: 59
[16]  Liu Y X, Dai H X, Deng J G, Zhang L, Au C T. Nanoscale, 2012, 4: 2317
[17]  Jiang H Y, Dai H X, Meng X, Zhang L, Deng J G, Ji K M. Chin J Catal (蒋海燕, 戴洪兴, 孟雪, 张磊, 邓积光, 吉科猛. 催化学报), 2011, 32: 939
[18]  Zhou L, Wang W Z, Xu H L. Cryst Growth Des, 2008, 8: 728
[19]  Sun S M, Wang W Z, Zhou L, Xu H L. Ind Eng Chem Res, 2009, 48: 1735
[20]  Su J, Zou X-X, Li G-D, Wei X, Yan C, Wang Y-N, Zhao J, Zhou L-J, Chen J-S. J Phys Chem C, 2011, 115: 8064
[21]  Liu H M, Imanishi A, Nakamura R, Nakato Y. Phys Stat Sol B, 2008, 245: 1807
[22]  Ishida T, Choi N, Mizutani W, Tokumoto H, Kojima I, Azehara H, Hokari H, Akiba U, Fujihira M. Langmuir, 1999, 15: 6799
[23]  Liu Y, Ma J F, Liu Z S, Dai C H, Song Z W, Sun Y, Fang J R, Zhao J G. Ceram Int, 2010, 36: 2073
[24]  Yan T J, Long J L, Shi X C, Wang D H, Li Z H, Wang X X. Environ Sci Technol, 2010, 44: 1380
[25]  Muktha B, Darriet J, Madras G, Row T N G. J Solid State Chem, 2006, 179: 3919
[26]  Li Z H, Dong T T, Zhang Y F, Wu L, Li J Q, Wang X X, Fu X Z. J Phys Chem C, 2007, 111: 4727
[27]  Li D, Ohashi N, Hishita S, Kolodiazhnyi T, Haneda H. J Solid State Chem, 2005, 178: 3293
[28]  Wang J S, Yin S, Zhang Q W, Saito F, Sato T. J Mater Chem, 2003, 13: 2348
[29]  Li H X, Zhang X Y, Huo Y N, Zhu J. Environ Sci Technol, 2007, 41: 4410
[30]  Long R, English N J. J Phys Chem C, 2009, 113: 8373
[31]  Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity. 2nd Ed. London: Academic Press, 1982. 61-84
[32]  Li G S, Zhang D Q, Yu J C. Chem Mater, 2008, 20: 3983
[33]  Berglund S P, Flaherty D W, Hahn N T, Bard A J, Mullins C B. J Phys Chem C, 2011, 115: 3794
[34]  Ye H, Lee J, Jang J S, Bard A J. J Phys Chem C, 2010, 114: 13322
[35]  Dai H X, He H, Au C T. Ind Eng Chem Res, 2002, 41: 37
[36]  Hillebrecht F U, Fraxedas J, Ley L, Trodahl H J, Zaanen J, Braun W, Mast M, Petersen H, Schaible M, Bourne L C, Pinsukanjana P, Zettl A. Phys Rev B, 1989, 39: 236
[37]  Sada A, Eyman D P. Ind Eng Chem Res, 2011, 50: 9027
[38]  Chen Y S, Xie K, Liu Z X. Appl Surf Sci, 1998, 133: 221
[39]  Heber M, Grünert W. J Phys Chem B, 2000, 104: 5288
[40]  Zhu Y J, Sun Y Q, Niu X Y, Yuan F L, Fu H G. Catal Lett, 2010, 135: 152
[41]  Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasiezna S. J Catal, 2004, 227: 282
[42]  Wei X-L, Fahlman M, Epstein A J. Macromolecules, 1999, 32: 3114
[43]  Ke D N, Peng T Y, Ma L, Cai P, Jiang P. Appl Catal A, 2008, 350: 111
[44]  Kudo A, Omori K, Kato H. J Am Chem Soc, 1999, 121: 11459
[45]  Jia Z F, Wang F M, Xin F, Zhang B Q. Ind Eng Chem Res, 2011, 50: 6688
[46]  Fu H B, Pan C S, Yao W Q, Zhu Y F. J Phys Chem B, 2005, 109: 22432
[47]  Zhou L, Wang W Z, Liu S W, Zhang L S, Xu H L, Zhu W. J Mol Catal A, 2006, 252: 120
[48]  Hussain S T, Khan K, Hussain R. J Nat Gas Chem, 2009, 18: 383
[49]  Yang K S, Dai Y, Huang B B. J Phys Chem C, 2007, 111: 18985
[50]  Izumi Y, Itoi T, Peng S, Oka K, Shibata Y. J Phys Chem C, 2009, 113: 6706
[51]  Matos J, García A, Zhao L, Titirici M M. Appl Catal A, 2010, 390: 175
[52]  Syoufian A, Nakashima K. J Colloid Interface Sci, 2007, 313: 213
[53]  Akpan U G, Hameed B H. Chem Eng J, 2011, 173: 369
[54]  Ji F, Li C L, Zhang J H. ACS Appl Mater Interfaces, 2010, 2: 1674
[55]  Li Y X, Lu G X, Li S B. Chemosphere, 2003, 52: 843
[56]  Akbarzadeh R, Umbarkar S B, Sonawane R S, Takle S, Dongare M K. Appl Catal A, 2010, 374: 103
[57]  Amano F, Nogami K, Ohtani B. J Phys Chem C, 2009, 113: 1536
[58]  Pan H, Gu B H, Zhang Z Y. J Chem Theory Comput, 2009, 5: 3074
[59]  Hwang D W, Cha K Y, Kim J, Kim H G, Bae S W, Lee J S. Ind Eng Chem Res, 2003, 42: 1184
[60]  Sun J H, Yang H, Xian T, Wang W P, Feng W J. Chin J Catal (孙军辉, 杨华, 县涛, 王伟鹏, 冯旺军. 催化学报), 2012, 33: 1982
[61]  Xiang Q J, Yu J G, Wong P K. J Colloid Interface Sci, 2011, 357: 163

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133